12 平面向量的集合A到A的映射.其中為常向量.若映射f滿足對任意的恒成立.則的坐標可能是 查看更多

 

題目列表(包括答案和解析)

平面向量的集合A到A的映射f由f(
x
)=
x
-2(
x
a
)  
a
確定,其中
a
為常向量.若映射f滿足f(
x
) •f(
y
) =
x
• 
y
x
,
y
∈A
恒成立,則
a
的坐標不可能是( 。
A、(0,0)
B、(-
2
4
,
2
4
C、(-
2
2
,
2
2
D、(-
1
2
,
3
2

查看答案和解析>>

平面向量的集合A到A的映射f(
x
)=
x
-(
x
a
)•
a
,其中
a
為常向量,若f滿足f(
x
)•f(
y
)=
x
y
對任意
x
,
y
∈A
成立,則
a
的坐標可以是( 。

查看答案和解析>>

已知平面向量的集合A到B的映射f為f(
x
)=
x
-2(
x
a
a
,其中
a
為常向量,若映射f滿足f(
x
)•f(
y
)=
x
y
對任意
x
y
∈A恒成立,則
a
用坐標可能是(  )

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

D

A

D

C

A

B

A

D

B

 

二、填空題

13.3    14.1   15.36π    16.

三、解答題

17.解:(1)

=………………………….2分

=.………………………………………4分

20090327

(2)要使函數(shù)為偶函數(shù),只需

…………………………………………….8分

因為,

所以.…………………………………………………………10分

18.(1)由題意知隨機變量ξ的取值為2,3,4,5,6.

,,…………….2分

 ,

.…………………………. …………4分

所以隨機變量ξ的分布列為

2

3

4

5

6

P

…………………………………………6分

(2)隨機變量ξ的期望為

…………………………12分

19.解:(1)過點作,由正三棱柱性質知平面,

連接,則在平面上的射影.

,,…………………………2分

中點,又,

所以的中點.

,

連結,則,

*為二面角

的平面角.…4分

中,

=,,

.

所以二面角的正切值為..…6分

(2)中點,

到平面距離等于到平面距離的2倍,

又由(I)知平面

平面平面,

,則平面,

.

故所求點到平面距離為.…………………………12分

20.解:(1)函數(shù)的定義域為,因為

所以 當時,;當時,.

的單調遞增區(qū)間是;的單調遞減區(qū)間是.………6分

(注: -1處寫成“閉的”亦可)

(2)由得:,

,則,

所以時,,時,,

上遞減,在上遞增,…………………………10分

要使方程在區(qū)間上只有一個實數(shù)根,則必須且只需

解之得

所以實數(shù)的取值范圍.……………………12分

21.解:(1)設,

因為拋物線的焦點,

.……………………………1分

,…2分

而點A在拋物線上,

.……………………………………4分

………………………………6分

(2)由,得,顯然直線,的斜率都存在且都不為0.

的方程為,則的方程為.

    由 ,同理可得.………8分

 

=.(當且僅當時取等號)

所以的最小值是8.…………………………………………………………12分

22.解:(1),由數(shù)列的遞推公式得

,,.……………………………………………………3分

(2)

=

==.……………………5分

數(shù)列為公差是的等差數(shù)列.

由題意,令,得.……………………7分

(3)由(2)知

所以.……………………8分

此時=

=,……………………10分

*

*

 =

>.……………………12分

 


同步練習冊答案