題目列表(包括答案和解析)
產(chǎn)品凈重小于100克的概率為(0.050+0.100)×2=0.300,
已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,設(shè)樣本容量為,
則,所以,凈重大于或等于98克并且小于
104克的產(chǎn)品的概率為(0.100+0.150+0.125)×2=0.75,所以樣本
中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是
120×0.75=90.故選A.
答案:A
【命題立意】:本題考查了統(tǒng)計與概率的知識,讀懂頻率分布直方圖,會計算概率以及樣本中有關(guān)的數(shù)據(jù).
解答題
若一臺挖掘機每天發(fā)生故障的概率均為0.2,發(fā)生故障則該天停止工作,該天將虧損1000元,若無故障則該天將獲利2000元
(文)分別求出5天內(nèi)獲利4000元和虧損2000元的概率
(理)(1)設(shè)3天內(nèi)所獲利潤為隨機變量ξ,求ξ的分布列;
(理)(2)若每月按30天計算,每月所獲利潤的平均數(shù)為多少?
(理)(3)若請專人維護,每天發(fā)生故障的概率可降低到0.1,則每月(按30天計算)最多可給維護人員多少工資?
某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為和p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;
(2)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ.
某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為和p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;
(2)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com