(?) 當(dāng)時(shí),令得 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)當(dāng)時(shí),求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當(dāng)……2分

   

為所求切線方程!4分

(2)當(dāng)

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調(diào)遞增!酀M足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是

 

查看答案和解析>>

已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時(shí),  又    

∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)時(shí)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時(shí),極大值為,無極小值

時(shí)  極大值是,極小值是        ----------8分

(Ⅲ)設(shè),

對(duì)求導(dǎo),得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(,

 

查看答案和解析>>

精英家教網(wǎng)外輪除特許外,不得進(jìn)入離我國海岸線12海里以內(nèi)的區(qū)域,如圖:我國某海島海岸線是半徑為6海里的圓形區(qū)域,在直徑的兩個(gè)端點(diǎn)A、B設(shè)立兩個(gè)觀察點(diǎn),已知一外輪在點(diǎn)P處,測得∠BAP=α,∠ABP=β.
(1)當(dāng)α=30°,β=120°時(shí),該外輪是否已進(jìn)入我領(lǐng)海主權(quán)范圍內(nèi)?
(2)角α,β應(yīng)滿足什么關(guān)系時(shí)?就應(yīng)向外輪發(fā)出警告,令其退出我海域.

查看答案和解析>>

是一組已知數(shù)據(jù),令,則當(dāng)x=      時(shí),取得最小值。

 

查看答案和解析>>

定義函數(shù)

(1)令函數(shù)的圖象為曲線,若存在實(shí)數(shù),使得曲線處有斜率是的切線,求實(shí)數(shù)的取值范圍;

(2)當(dāng),且時(shí),證明:.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案