由.得點.又由已知得------4分 查看更多

 

題目列表(包括答案和解析)

已知點),過點作拋物線的切線,切點分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數的性質圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又,

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

,

當且僅當,即,時取等號.

故圓面積的最小值

 

查看答案和解析>>

 

已知函數.

(Ⅰ)討論函數的單調性; 

(Ⅱ)設,證明:對任意,.

    1.選修4-1:幾何證明選講

    如圖,的角平分線的延長線交它的外接圓于點

(Ⅰ)證明:∽△;

(Ⅱ)若的面積,求的大小.

證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.

因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.

故△ABE∽△ADC.

(Ⅱ)因為△ABE∽△ADC,所以,即AB·ACAD·AE.

SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

則sin∠BAC=1,又∠BAC為三角形內角,所以∠BAC=90°.

 

查看答案和解析>>

已知函數 R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數a的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調遞增,

.                  ……10分

(2)當時,令,對稱軸,

上單調遞增,又    

① 當,即時,上恒成立,

所以單調遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

已知函數

(1)若函數的圖象經過P(3,4)點,求a的值;

(2)比較大小,并寫出比較過程;

(3)若,求a的值.

【解析】本試題主要考查了指數函數的性質的運用。第一問中,因為函數的圖象經過P(3,4)點,所以,解得,因為,所以.

(2)問中,對底數a進行分類討論,利用單調性求解得到。

(3)中,由知,.,指對數互化得到,,所以,解得所以, 或 .

解:⑴∵函數的圖象經過,即.        … 2分

,所以.             ………… 4分

⑵當時,;

時,. ……………… 6分

因為,,

時,上為增函數,∵,∴.

.當時,上為減函數,

,∴.即.      …………………… 8分

⑶由知,.所以,(或).

.∴,       … 10分

 或 ,所以, 或 .

 

查看答案和解析>>

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)

在平行四邊形中,已知過點的直線與線段分別相交于點。若。

(1)求證:的關系為

(2)設,定義函數,點列在函數的圖像上,且數列是以首項為1,公比為的等比數列,為原點,令,是否存在點,使得?若存在,請求出點坐標;若不存在,請說明理由。

(3)設函數上偶函數,當,又函數圖象關于直線對稱, 當方程上有兩個不同的實數解時,求實數的取值范圍。

查看答案和解析>>


同步練習冊答案