燈的時(shí)間的關(guān)系為 .人影長(zhǎng)度的變化速度v為 (m/s).(二)選做題(13-15題.考生只能從中選做兩題) 查看更多

 

題目列表(包括答案和解析)

路燈距地面為6m,一個(gè)身高為1.6m的人以1.2m/s的速度從路燈的正底下,沿某直線離開(kāi)路燈,那么人影長(zhǎng)度S(m)與人從路燈的正底下離開(kāi)路燈的時(shí)間t(s)的關(guān)系為
 
,人影長(zhǎng)度的變化速度v為
 
(m/s).

查看答案和解析>>

路燈距地面為6m,一個(gè)身高為1.6m的人以1.2m/s的速度從路燈的正底下,沿某直線離開(kāi)路燈,那么人影長(zhǎng)度S(m)與人從路燈的正底下離開(kāi)路燈的時(shí)間t(s)的關(guān)系為    ,人影長(zhǎng)度的變化速度v為    (m/s).

查看答案和解析>>

路燈距地面為6m,一個(gè)身高為1.6m的人以1.2m/s的速度從路燈的正底下,沿某直線離開(kāi)路燈,那么人影長(zhǎng)度S(m)與人從路燈的正底下離開(kāi)路燈的時(shí)間t(s)的關(guān)系為    ,人影長(zhǎng)度的變化速度v為    (m/s).

查看答案和解析>>

路燈距地面為6m,一個(gè)身高為1.6m的人以1.2m/s的速度從路燈的正底下,沿某直線離開(kāi)路燈,那么人影長(zhǎng)度S(m)與人從路燈的正底下離開(kāi)路燈的時(shí)間t(s)的關(guān)系為    ,人影長(zhǎng)度的變化速度v為    (m/s).

查看答案和解析>>

路燈距地面為6m,一個(gè)身高為1.6m的人以1.2m/s的速度從路燈的正底下,沿某直線離開(kāi)路燈,那么人影長(zhǎng)度S(m)與人從路燈的正底下離開(kāi)路燈的時(shí)間t(s)的關(guān)系為    ,人影長(zhǎng)度的變化速度v為    (m/s).

查看答案和解析>>

一.選擇題:BAAC  ADBC

解析:

1.,復(fù)數(shù)  對(duì)應(yīng)的點(diǎn)為,它與原點(diǎn)的距離是,故選B.

2.,但.故選A.

3.∵是等差數(shù)列,,,∴,

,故選A.

4.依題意知,,,又,,,故選C.

5.把直線向下平移二個(gè)單位,則點(diǎn)到直線的距離就相等了,故點(diǎn)的軌跡為拋物線,它的方程為,選A.

6.由三視圖知該工作臺(tái)是棱長(zhǎng)為80的正方體上面圍上一塊矩形和兩塊直角三角形合

板,如右圖示,則用去的合板的面積故選D.

7.,,故選B.

8.由,可得: 知滿足事件A的區(qū)域的面積

,而滿足所有條件的區(qū)域的面積:,從而,

得:,故選C.

二.填空題:9.18 ; 10.2;11. ;12. 、;13. ;14.;15.、

解析:9.按系統(tǒng)抽樣的方法,樣本中4位學(xué)生的座位號(hào)應(yīng)成等差數(shù)列,將4位學(xué)生的座位號(hào)按從小到大排列,顯然6,30不可能相鄰,也就是中間插有另一位同學(xué),其座位號(hào)為(6+30)÷2=18,故另一位同學(xué)的座位號(hào)為18.

10. ,令

從而展開(kāi)式中的系數(shù)是,故填2.

11.

,故填.

12.設(shè)人經(jīng)過(guò)時(shí)間ts后到達(dá)點(diǎn)B,這時(shí)影長(zhǎng)為AB=S,如圖由平幾的

知識(shí)可得,=,由導(dǎo)數(shù)的意義知人影長(zhǎng)度

的變化速度v=(m/s)

13.曲線為拋物線段 借助圖形直觀易得

14. ,由柯西不等式得:

.

15.由切割線定理得,,

連結(jié)OC,則,,

三.解答題:

16.解:(1)---3分

∴函數(shù)的最小正周期為,值域?yàn)?sub>。--------------------------------------5分

(2)解法1:依題意得: ---------------------------6分

   ∴

-----------------------------------------8分

------------------------------------------------------------------------------12分

解法2:依題意得: ----①-----------7分

   ∴

---------------------------------9分

-----------②----------------10分

①+②得,∴-------------------------12分

解法3:由,--------------------7分

兩邊平方得,,--------------------------8分

  ∴

--------------------------------------9分

,得--------------------10分

.---------------------------------12分

17.解:(1)不論點(diǎn)上的任何位置,都有平面垂直于平面.---1分

證明如下:由題意知,,

    平面

平面   平面平面.------------------4分

(2)解法一:過(guò)點(diǎn)P作,垂足為,連結(jié)(如圖),則,

是異面直線所成的角.----------------------6分

中 ∵   ∴

,   ,      

 

中,

.----------8分

異面異面直線所成角的余弦值為.----------------9分

解法二:以為原點(diǎn),所在的直線為x軸建立空間直角坐標(biāo)系如圖示,則,,,,

-----6分

∴異面異面直線所成角的余弦值為.-----9分

(3)由(1)知,平面

與平面所成的角,---------------------------10分

.------------------------------------11分

當(dāng)最小時(shí),最大,這時(shí),由--13分

,即與平面所成角的正切值的最大值.---14分

18.解:  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨(dú)立,

.------------------------------------------------------2分

(1)至少有1人面試合格的概率是

----------------------4分

(2)的可能取值為0,1,2,3.----------------------------------------------------------5分

     ∵

             =

              =---------------------------6分

     

              =

              =--------------------------------7分

      ---------------------8分

      ----------------------9分

的分布列是

0

1

2

3

-------------10分

的期望----------------------------------------12分

19.解:(1)當(dāng)時(shí),∵,∴

,,點(diǎn),,------------2分

設(shè)的方程為

  由過(guò)點(diǎn)F,B,C得

-----------------①

-----------------②

-------------------③----------------------------5分

由①②③聯(lián)立解得,,-----------------------7分

∴所求的的方程為-------------8分

(2)∵過(guò)點(diǎn)F,B,C三點(diǎn),∴圓心P既在FC的垂直平分線上,也在BC的垂直平分線上,F(xiàn)C的垂直平分線方程為--------④----------------------9分

∵BC的中點(diǎn)為,

∴BC的垂直平分線方程為-----⑤---------------------10分

由④⑤得,即----------------11分

∵P在直線上,∴

  ∴

-------------------------------------------13分

∴橢圓的方程為--------------------------------------------------------------14分

20.解:(1)當(dāng)

同步練習(xí)冊(cè)答案