8. 已知向量的夾角為60°.則的值為 查看更多

 

題目列表(包括答案和解析)

已知向量的夾角為60°,共線,則的最小值為( )
A.
B.
C.
D.1

查看答案和解析>>

已知向量
a
b
的夾角為60°,|
a
|=|
b
|=1
c
a
+
b
共線,則|
a
+
c
|
的最小值為( 。
A、
2
2
B、
3
2
C、
1
2
D、1

查看答案和解析>>

已知向量
a
、
b
的夾角為60°,且|
a
|=2,|
b
|=1,若(2
a
+
b
)⊥(m
a
-
b
)
,則m的值為(  )
A、3
B、
1
3
C、
2
3
D、
3
2

查看答案和解析>>

已知向量
a
b
夾角為60°,|
a
|=3,|
b
|=2,若(3
a
+5
b
)⊥(m
a
-
b
)
,則m的值是( 。

查看答案和解析>>

已知向量
a
、
b
夾角為60°,|
a
|=3,|
b
|=2,若(3
a
+m
b
)⊥
a
,則m的值是( 。

查看答案和解析>>

三、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空題

13.2     14. 31    15.     16.  2.

三、解答題

17.17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的單調(diào)遞增區(qū)間為。

18.(Ⅰ)解:設“從甲盒內(nèi)取出的2個球均為紅球”為事件,“從乙盒內(nèi)取出的2個球均為紅球”為事件.由于事件相互獨立,且

,,

故取出的4個球均為紅球的概率是

(Ⅱ)解:設“從甲盒內(nèi)取出的2個球中,1個是紅球,1個是黑球;從乙盒內(nèi)取出的2個紅球為黑球”為事件,“從甲盒內(nèi)取出的2個球均為黑球;從乙盒內(nèi)取出的2個球中,1個是紅球,1個是黑球”為事件.由于事件互斥,且

,

故取出的4個紅球中恰有4個紅球的概率為

19.(Ⅰ)取DC的中點E.

∵ABCD是邊長為的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE為求直線PB與平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)連接AC、BD交于點O,因為ABCD是菱形,所以AO⊥BD.

平面, AO平面,

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,連接AF,則AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解:(1)令得所求增區(qū)間為。

(2)要使當恒成立,只要當。

由(1)知

時,是增函數(shù),;

時,是減函數(shù),;

時,是增函數(shù),

,因此。

21. 證明:由是關于x的方程的兩根得

。

,

是等差數(shù)列。

(2)由(1)知

。

。

符合上式, 。

(3)

  ②

①―②得 。

22. (1)∵

 

,∴

在點附近,當時,;當時,

是函數(shù)的極小值點,極小值為;

在點附近,當時,;當時,

是函數(shù)的極大值點,極大值為

,易知,

是函數(shù)的極大值點,極大值為;

是函數(shù)的極小值點,極小值為

(2)若在上至少存在一點使得成立,

上至少存在一解,即上至少存在一解

由(1)知,

時,函數(shù)在區(qū)間上遞增,且極小值為

∴此時上至少存在一解; 

時,函數(shù)在區(qū)間上遞增,在上遞減,

∴要滿足條件應有函數(shù)的極大值,即

綜上,實數(shù)的取值范圍為。

 

 


同步練習冊答案