20.解(1)依題意 查看更多

 

題目列表(包括答案和解析)

解答題:解答應寫出文字說明、證明過程或演算步驟

過點P(1,0)作曲線C:y=x2(x∈(0,+∞))的切線,切點為Q1,設(shè)點Q1在x軸上的投影為P1(即過點Q1作x軸的垂線,垂足為P1),又過點P1作曲線C的切線,切點為Q2,設(shè)點Q2在x軸上的投影為P2,…,依次下去,得到一系列點Q1,Q2,Q3,…,Qn,…,設(shè)點Qn的橫坐標為an,n∈N*

(1)

求數(shù)列{an}的通項公式;

(2)

比較an的大小,并證明你的結(jié)論;

(3)

設(shè),數(shù)列{bn}的前n項和為Sn,求證:對任意的正整數(shù)n均有≤Sn<2.

查看答案和解析>>

解答題

已知等差數(shù)列的首項為a,公差為b;等比數(shù)列的首項為b,公比為a,其中a,b∈N+,且a1<b1<a2<b2<a3

(1)

a的值;

(2)

若對于任意n∈N+,總存在m∈N+,使am+3=bn,求b的值;

(3)

在(2)中,記{cn}是所有{an}中滿足am+3=bn,m∈N+的項從小到大依次組成的數(shù)列,又記Sn為{cn}的前n項和,Tn是{an}的前n項和,求證:(n∈N+).

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟.

已知數(shù)列,其中是首項為1,公差為1的等差數(shù)列;是公差為的等差數(shù)列;是公差為的等差數(shù)列().

(1)

,求

(2)

試寫出關(guān)于的關(guān)系式,并求的取值范圍;

(3)

解:續(xù)寫已知數(shù)列,使得是公差為的等差數(shù)列,…,依次類推,把已知數(shù)列推廣為無窮數(shù)列.以(2)作為特例研究寫出關(guān)于d的關(guān)系式并化簡.(理)(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟

通過研究學生的學習行為,心理學家發(fā)現(xiàn),學生的接受能力依賴于老師引入概念和描述問題所用的時間.講座開始時,學生興趣激增;中間有一段不太長的時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散.分析結(jié)果和實驗表明,用f(x)表示學生掌握和接受概念的能力,x表示提出概念和講授概念的時間(單位:分),可有以下的關(guān)系式:

(1)

開講后多少分鐘,學生的接受能力最強?能維持多少時間?

(2)

開講后5分鐘與開講后20分鐘比較,學生接受能力何時強一些?

(3)

一個數(shù)學難題,需要55的接受能力以及13分鐘時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講授完這個難題?

查看答案和解析>>

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應的變換矩陣為M1,變換T2對應的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標;
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>


同步練習冊答案