11.某小組有4人.負(fù)責(zé)從周一至周五的班級值日.每天只安排一人.每人至少一天.則安排方法共有 A.480種 B.300種 C.240種 D.120種 查看更多

 

題目列表(包括答案和解析)

在高二年級某班學(xué)生在數(shù)學(xué)校本課程選課過程中,已知第一小組與第二小組各有六位同學(xué).每位同學(xué)都只選了一個科目,第一小組選《數(shù)學(xué)運(yùn)算》的有1人,選《數(shù)學(xué)解題思想與方法》的有5人,第二小組選《數(shù)學(xué)運(yùn)算》的有2人,選《數(shù)學(xué)解題思想與方法》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析選課情況.
(Ⅰ)求選出的4人均選《數(shù)學(xué)解題思想與方法》的概率;
(Ⅱ)設(shè)ξ為選出的4個人中選《數(shù)學(xué)運(yùn)算》的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

(2010•浙江模擬)在“自選模塊”考試中,某考場的每位同學(xué)都選作了一道數(shù)學(xué)題,第一小組選《不等式選講》的有1人,選《坐標(biāo)系與參數(shù)方程》的有5人;第二小組選《不等式選講》的有2人,選《坐標(biāo)系與參數(shù)方程》的有4人.現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(1)求選出的4 人均為選《坐標(biāo)系與參數(shù)方程》的概率;
(2)設(shè)ξ為選出的4個人中選《不等式選講》的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

在“自選模塊”考試中,某試場的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(Ⅰ)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;
(Ⅱ)設(shè)ξ為選出的4個人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

某小組有4個男同學(xué)和3個女同學(xué),從這小組中選取4人去完成三項(xiàng)不同的工作,其中女同學(xué)至少二人,每項(xiàng)工作至少一人,則不同選派方法的種數(shù)為
792
792

查看答案和解析>>

在高中“自選模塊”考試中,某考場的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況

(1)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;

(2)設(shè)為選出的4個人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求的分布列和數(shù)學(xué)期望

 

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

ABBD    DABD    BCCA

二、填空題:本大題共4小題,每小題4分,共16分。

13.    14.3    15.    16.①③

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明、證明過程或演算步驟。

17.解:(I)………2分

    依題意函數(shù)

    所以 …………4分

   

   (II)

   

18.解:(I)由題意得:上年度的利潤的萬元;

    本年度每輛車的投入成本為萬元;

    本年度每輛車的出廠價(jià)為萬元;

    本年度年銷售量為 ………………2分

    因此本年度的利潤為

   

   (II)本年度的利潤為

   

………………7分

(舍去)。  …………9分

      1. <rp id="ohngi"><dl id="ohngi"></dl></rp>
      2. <ruby id="ohngi"><noframes id="ohngi"></noframes></ruby>

        <span id="ohngi"></span>
        <rp id="ohngi"></rp>

        19.(I)解:取CE中點(diǎn)P,連結(jié)FP、BP,

        ∵F為CD的中點(diǎn),

        ∴FP//DE,且FP=

        又AB//DE,且AB=

        ∴AB//FP,且AB=FP,

        ∴ABPF為平行四邊形,∴AF//BP!2分

        又∵AF平面BCE,BP平面BCE,

        ∴AF//平面BCE。 …………4分

           (II)∵△ACD為正三角形,∴AF⊥CD。

        ∵AB⊥平面ACD,DE//AB,

        ∴DE⊥平面ACD,又AF平面ACD,

        ∴DE⊥AF。又AF⊥CD,CD∩DE=D,

        ∴AF⊥平面CDE。 …………6分

        又BP//AF,∴BP⊥平面CDE。又∵BP平面BCE,

        ∴平面BCE⊥平面CDE。 …………8分

           (III)由(II),以F為坐標(biāo)原點(diǎn),F(xiàn)A,F(xiàn)D,F(xiàn)P所在的直線分別為x,y,z軸(如圖),建立空間直角坐標(biāo)系F―xyz.設(shè)AC=2,

        則C(0,―1,0),………………9分

         ……10分

        顯然,為平面ACD的法向量。

        設(shè)平面BCE與平面ACD所成銳二面角為

        ,即平面BCE與平面ACD所成銳二面角為45°!12分

        20.(I)證明:當(dāng)

        , …………3分

        , …………5分

        所以,的等比數(shù)列。 …………6分

           (II)解:由(I)知, …………7分

        可見,若存在滿足條件的正整數(shù)m,則m為偶數(shù)。 …………9分

        21.解:(I)解:由

        知點(diǎn)C的軌跡是過M,N兩點(diǎn)的直線,故點(diǎn)C的軌跡方程是:

           (II)解:假設(shè)存在于D、E兩點(diǎn),并以線段DE為直徑的圓都過原點(diǎn)。設(shè)

            由題意,直線l的斜率不為零,

            所以,可設(shè)直線l的方程為

            代入 …………7分

           

            此時(shí),以DE為直徑的圓都過原點(diǎn)。 …………10分

            設(shè)弦DE的中點(diǎn)為

           

        22.解:(I)函數(shù)

             …………1分

             …………2分

            當(dāng)

            列表如下:

        +

        0

        極大值

            綜上所述,當(dāng);

            當(dāng) …………5分

           (II)若函數(shù)

            當(dāng),

            當(dāng),故不成立。 …………7分

            當(dāng)由(I)知,且是極大值,同時(shí)也是最大值。

            從而

            故函數(shù) …………10分

           (III)由(II)知,當(dāng)

           

         

         

         


        同步練習(xí)冊答案
        <center id="ohngi"></center>