題目列表(包括答案和解析)
(本小題滿分12分)
已知ABC的三個(gè)頂點(diǎn)的直角坐標(biāo)分別為A(3,4)、B(0,0)、C(c,0)
若c=5,求sin∠A的值;
若∠A為鈍角,求c的取值范圍;
(本小題滿分13分)
袋中有五張卡片,其中紅色卡片三張,標(biāo)號(hào)分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號(hào)分
為1,2.
(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率;
(Ⅱ)現(xiàn)袋中再放入一張標(biāo)號(hào)為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡
片顏色不同且標(biāo)號(hào)之和小于4的概率.
(本小題滿分12分)
某服裝商場為了了解毛衣的月銷售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4個(gè)月的月銷售量與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:
(1) 算出線性回歸方程; (a,b精確到十分位)
(2)氣象部門預(yù)測下個(gè)月的平均氣溫約為6℃,據(jù)此估計(jì),求該商場下個(gè)月毛衣的銷售量.
(本小題滿分12分)某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如右圖所示.
(1)下表是年齡的頻數(shù)分布表,求正整數(shù)的值;
區(qū)間 |
[25,30) |
[30,35) |
[35,40) |
[40,45) |
[45,50] |
人數(shù) |
50 |
50 |
150 |
(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求至少有1人年齡在第3組的概率.
(本小題滿分12分)
已知ABC的三個(gè)頂點(diǎn)的直角坐標(biāo)分別為A(3,4)、B(0,0)、C(c,0)
(1) 若c=5,求sin∠A的值;
(2) 若∠A為鈍角,求c的取值范圍;
1―5、 CDDCA 6―10、DABAB 11、 12、1, 9
13解:因?yàn)榉匠?i>x 2 + mx + 1=0有兩個(gè)不相等的實(shí)根,
所以Δ1=m 2 ? 4>0, ∴m>2或m < ? 2
又因?yàn)椴坏仁?x 2 +4(m ? 2)x + 1>0的解集為R,
所以Δ2=16(m ? 2) 2? 16<0, ∴1< m <3
因?yàn)?i>p或q為真,p且q為假,所以p與q為一真一假,
(1)當(dāng)p為真q為假時(shí),
(2)當(dāng)p為假q為真時(shí),
綜上所述得:m的取值范圍是或
14、解: 直線方程為y=-x+4,聯(lián)立方程,消去y得,.
設(shè)A(),B(),得
所以:,
由已知可得+=0,從而16-8p=0,得p=2.
所以拋物線方程為y2=4x,焦點(diǎn)坐標(biāo)為F(1,0)
15、解(Ⅰ) AC與PB所成角的余弦值為.
(Ⅱ)N點(diǎn)到AB、AP的距離分別為1,.
16解: (1); (2)略
17、6 18、①②③⑤ 19、B 20、B
21、解:(1)略 (2)
22、解:(1)設(shè)雙曲線C的漸近線方程為y=kx,則kx-y=0
∵該直線與圓 相切,∴雙曲線C的兩條漸近線方程為y=±x.
故設(shè)雙曲線C的方程為.又雙曲線C的一個(gè)焦點(diǎn)為,
∴,∴雙曲線C的方程為:.
(2)由得.令
∵直線與雙曲線左支交于兩點(diǎn),等價(jià)于方程f(x)=0在上有兩個(gè)
不等負(fù)實(shí)根.
因此,解得..
(3). ∵ AB中點(diǎn)為,
∴直線l的方程為:. 令x=0,得.
∵,∴,∴.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com