二. 選擇題本大題共有4 題.每題都給出代號(hào)為A.B.C.D的四個(gè)結(jié)論.其中有且只有一個(gè)結(jié)論是正確的.必須把正確結(jié)論的代號(hào)寫在題后的圓括號(hào)內(nèi).選對(duì)得4分.不選.選錯(cuò)或者選出的代號(hào)超過一個(gè).一律得零分. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分16分)

設(shè)兩個(gè)不共線的向量的夾角為,且.

(1)若,求的值;

(2)若為定值,點(diǎn)在直線上移動(dòng),的最小值為,求的值.

查看答案和解析>>

(本小題滿分16分)   已知二次函數(shù)。 (1)若是否存在為正數(shù) ,若存在,證明你的結(jié)論,若不存在,說明理由;(2)若對(duì)有2個(gè)不等實(shí)根,證明必有一個(gè)根屬于(3)若,是否存在的值使=成立,若存在,求出的取值范圍,若不存在,說明理由。

  

查看答案和解析>>

(本小題滿分16分)某連鎖分店銷售某種商品,每件商品的成本為4元,并且每件商品需向總店交a元(1≤a≤3)的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價(jià)為元(8≤x≤9)時(shí),一年的銷售量為(10-x)2萬件.(1)求該連鎖分店一年的利潤L(萬元)與每件商品的售價(jià)x的函數(shù)關(guān)系式L(x);(2)當(dāng)每件商品的售價(jià)為多少元時(shí),該連鎖分店一年的利潤L最大,并求出L的最大值M(a).

查看答案和解析>>

(本小題滿分16分)

隨機(jī)抽取某廠的某種產(chǎn)品400件,經(jīng)質(zhì)檢,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生產(chǎn)1件一、二、三等品獲得的利潤分別為6萬元、2萬元、1萬元,而1件次品虧損2萬元.設(shè)1件產(chǎn)品的利潤(單位:萬元)為

(1)求的分布列和數(shù)學(xué)期望

(2)經(jīng)技術(shù)革新后,仍有四個(gè)等級(jí)的產(chǎn)品,但次品率降為,一等品率提高為.如果此時(shí)要求1件產(chǎn)品的平均利潤不小于4.73萬元,則三等品率最多是多少?

 

 

查看答案和解析>>

(本小題滿分16分)

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實(shí)數(shù)m、n使得h (x) = m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個(gè)函數(shù).

設(shè)f (x)=x2+ax,g(x)=x+b(R),= 2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個(gè)二次函數(shù).

(1)設(shè),若h (x)為偶函數(shù),求

(2)設(shè),若h (x)同時(shí)也是g(x)、l(x) 在R上生成的一個(gè)函數(shù),求a+b的最小值;

 

查看答案和解析>>

一、1.  2.3  3.  4.18   5.   6.55  7.  8.0   9.7    10.0或-2

    11.   12.

二、13.C     14.B     15.D     16.A

三、17.解:(1);

         (2);

         (3)表面積S=48.

18.解:(1) ,

        

(2)

  由,得當(dāng)時(shí),取得最小值-2

19.解:(1)

       

(2)

,①

,②

②-①,整理,得

20.解:(1),設(shè)

        則

任取,

當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞增.

            由

            的值域?yàn)?sub>.

(2)設(shè),

所以單調(diào)遞減.

         (3)由的值域?yàn)椋?sub>

           所以滿足題設(shè)僅需:

           解得,.

  21.解:(1)

           又

         (2)應(yīng)用第(1)小題結(jié)論,得取倒數(shù),得

         (3)由正弦定理,原題⇔△ABC中,求證:

         證明:由(2)的結(jié)論得,均小于1,

               ,

              

          (4)如得出:四邊形ABCD中,求證:且證明正確給3分;

             如得出:凸n邊形A1A2A3┅An中,邊長依次為求證:

             且證明正確給4分.

             如能應(yīng)用到其它內(nèi)容有創(chuàng)意則給高分.

             如得出:為各項(xiàng)為正數(shù)的等差數(shù)列,,求證:

             .

 

 

 


同步練習(xí)冊(cè)答案