題目列表(包括答案和解析)
如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,
OC=OE=4,DB⊥DC,直線AD與經過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交
于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經過B、E、C三點的拋物線的解析式;
(2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件
的點P的坐標;若不存在,請說明理由;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成
為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.
如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,
OC=OE=4,DB⊥DC,直線AD與經過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交
于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經過B、E、C三點的拋物線的解析式;
(2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件
的點P的坐標;若不存在,請說明理由;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成
為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.
解答時應寫出必要的文字說明、證明過程或演算步驟
已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設點Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)試問:過點T()是否存在直線l,使直線l與曲線C交于A,B兩點,且,(O為坐標原點)若存在求出直線l的方程,不存在說明理由.
我們將不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點稱為切點.解決下列問題:
已知拋物線上的點到焦點的距離等于4,直線與拋物線相交于不同的兩點、,且(為定值).設線段的中點為,與直線平行的拋物線的切點為..
(1)求出拋物線方程,并寫出焦點坐標、準線方程;
(2)用、表示出點、點的坐標,并證明垂直于軸;
(3)求的面積,證明的面積與、無關,只與有關.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com