例1.求直線y=4x在變換下得到的方程.并說(shuō)明二者的幾何關(guān)系 查看更多

 

題目列表(包括答案和解析)

在直角坐標(biāo)系中,定義:(xn,yn)
11
1-1
=(xn+1,yn+1)
,即
xn+1=xn+yn
yn+1=xn-yn
(n∈N*)為點(diǎn)Pn(xn,yn)到點(diǎn)Pn+1(xn+1,yn+1)的一個(gè)變換.我們把它稱(chēng)為點(diǎn)變換(或矩陣變換).已知P1(1,0).
(1)求直線y=x在矩陣變換下的直線方程;
(2)設(shè)dn=|OPn|2(n∈N*),求證:dn為等比數(shù)列,并寫(xiě)出dn的通項(xiàng)公式;
(3)設(shè)P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是經(jīng)過(guò)點(diǎn)變換得到的一列點(diǎn).求數(shù)列xn,yn的通項(xiàng)公式.

查看答案和解析>>

在直角坐標(biāo)系中,定義:,即(n∈N*)為點(diǎn)Pn(xn,yn)到點(diǎn)Pn+1(xn+1,yn+1)的一個(gè)變換.我們把它稱(chēng)為點(diǎn)變換(或矩陣變換).已知P1(1,0).
(1)求直線y=x在矩陣變換下的直線方程;
(2)設(shè)dn=|OPn|2(n∈N*),求證:dn為等比數(shù)列,并寫(xiě)出dn的通項(xiàng)公式;
(3)設(shè)P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是經(jīng)過(guò)點(diǎn)變換得到的一列點(diǎn).求數(shù)列xn,yn的通項(xiàng)公式.

查看答案和解析>>

在直角坐標(biāo)系中,定義:,即(n∈N*)為點(diǎn)Pn(xn,yn)到點(diǎn)Pn+1(xn+1,yn+1)的一個(gè)變換.我們把它稱(chēng)為點(diǎn)變換(或矩陣變換).已知P1(1,0).
(1)求直線y=x在矩陣變換下的直線方程;
(2)設(shè)dn=|OPn|2(n∈N*),求證:dn為等比數(shù)列,并寫(xiě)出dn的通項(xiàng)公式;
(3)設(shè)P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是經(jīng)過(guò)點(diǎn)變換得到的一列點(diǎn).求數(shù)列xn,yn的通項(xiàng)公式.

查看答案和解析>>

(2000•上海)已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實(shí)數(shù),i為虛數(shù)單位,且對(duì)于任意復(fù)數(shù)z,有w=
.
z0
.
z
,|w|=2|z|.
(Ⅰ)試求m的值,并分別寫(xiě)出x'和y'用x、y表示的關(guān)系式;
(Ⅱ)將(x、y)作為點(diǎn)P的坐標(biāo),(x'、y')作為點(diǎn)Q的坐標(biāo),上述關(guān)系可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q,當(dāng)點(diǎn)P在直線y=x+1上移動(dòng)時(shí),試求點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的軌跡方程;
(Ⅲ)是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上?若存在,試求出所有這些直線;若不存在,則說(shuō)明理由.

查看答案和解析>>

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對(duì)應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標(biāo)與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為(4
2
,
π
4
),曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)M到曲線C上的點(diǎn)的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實(shí)數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>


同步練習(xí)冊(cè)答案