解:(1)由題意得: . ---------4分 查看更多

 

題目列表(包括答案和解析)

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè)二次函數(shù),對任意實數(shù)恒成立;數(shù)列滿足.

(1)求函數(shù)的解析式和值域;

(2)試寫出一個區(qū)間,使得當(dāng)時,數(shù)列在這個區(qū)間上是遞增數(shù)列,

并說明理由;

(3)已知,求:.

查看答案和解析>>

必做題】本題滿分10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.

由數(shù)字1,2,3,4組成五位數(shù),從中任取一個.

(1)求取出的數(shù)滿足條件:“對任意的正整數(shù),至少存在另一個正整數(shù)

,且,使得”的概率;

(2)記為組成該數(shù)的相同數(shù)字的個數(shù)的最大值,求的概率分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

.【必做題】本題滿分10分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
由數(shù)字1,2,3,4組成五位數(shù),從中任取一個.
(1)求取出的數(shù)滿足條件:“對任意的正整數(shù),至少存在另一個正整數(shù)
,且,使得”的概率;
(2)記為組成該數(shù)的相同數(shù)字的個數(shù)的最大值,求的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。

第一問中,利用當(dāng)時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時,令,對稱軸,

上單調(diào)遞增,又    

① 當(dāng),即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>


同步練習(xí)冊答案