∴原方程的解為x1=.x2=-.x3=.x4=-解答問題:(1)填空:在由原方程得到方程①的過程中.利用 法達到了降次的目的.體現(xiàn)了 的數(shù)學(xué)思想.(2)解方程x4-x2-6=0 查看更多

 

題目列表(包括答案和解析)

閱讀材料,解答問題:

為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1視為一個整體,然后設(shè)x2-1=y(tǒng),則(x2-1)2=y(tǒng)2,原方程化為y2-5y+4=0①  解得y1=1,y2=4.

當(dāng)y=1時,x2-1=1,所以x2=2,所以x=±;

當(dāng)y=4時,x2-1=4,所以x2=5,所以x=±

所以原方程的解為x1,x2=-,x3,x4=-

(1)填空:在由原方程得到方程①的過程中,利用了________法達到了降次的目的,體現(xiàn)了________的數(shù)學(xué)思想;

(2)解方程x4-x2-6=0.

查看答案和解析>>

閱讀下面材料:解答問題

為解方程(x2-1)2-5(x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設(shè)x2-1=y(tǒng),那么原方程可化為y2-5y+4=0,解得y1=1,y2=4.

當(dāng)y=1時,x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時,x2-1=4,∴x2=5,∴x=±,

故原方程的解為x1,x2=-,x3,x4=-

上述解題方法叫做換元法;

請利用換元法解方程.(x2-x)2-4(x2-x)-12=0

查看答案和解析>>

閱讀下面的材料,回答問題:
解方程x4-5x2+4=0,這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-5y+4=0 ①,解得y1=1,y2=4.
當(dāng)y=1時,x2=1,∴x=±1;
當(dāng)y=4時,x2=4,∴x=±2;
∴原方程有四個根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的過程中,利用___________法達到________的目的,體現(xiàn)了
數(shù)學(xué)的轉(zhuǎn)化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.

查看答案和解析>>

閱讀下面的材料,回答問題:

解方程x4-5x2+4=0,這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:

設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-5y+4=0  ①,解得y1=1,y2=4.

當(dāng)y=1時,x2=1,∴x=±1;

當(dāng)y=4時,x2=4,∴x=±2;

∴原方程有四個根:x1=1,x2=-1,x3=2,x4=-2.

(1)在由原方程得到方程①的過程中,利用___________法達到________的目的,體現(xiàn)了

數(shù)學(xué)的轉(zhuǎn)化思想.

(2)解方程(x2+x)2-4(x2+x)-12=0.

 

查看答案和解析>>

閱讀下面的材料,回答問題:
解方程x4-5x2+4=0,這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)閥2-5y+4=0 ①,解得y1=1,y2=4.
當(dāng)y=1時,x2=1,∴x=±1;
當(dāng)y=4時,x2=4,∴x=±2;
∴原方程有四個根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的過程中,利用___________法達到________的目的,體現(xiàn)了
數(shù)學(xué)的轉(zhuǎn)化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.

查看答案和解析>>


同步練習(xí)冊答案