如圖.四邊形OABC為直角梯形.A.點(diǎn)M從O出發(fā)以每秒2個(gè)單位長度的速度向A運(yùn)動,點(diǎn)N從B同時(shí)出發(fā).以每秒1個(gè)單位長度的速度向C運(yùn)動.其中一個(gè)動點(diǎn)到達(dá)終點(diǎn)時(shí).另一個(gè)動點(diǎn)也隨之停止運(yùn)動.過點(diǎn)N作NP垂直軸于點(diǎn)P.連結(jié)AC交NP于Q.連結(jié)MQ.(1)點(diǎn) 能到達(dá)終點(diǎn),(2)求△AQM的面積S與運(yùn)動時(shí)間t的函數(shù)關(guān)系式.并寫出自變量f的取值范圍.當(dāng)t為何值時(shí).S的值最大,(3)是否存在點(diǎn)M.使得△AQM為直角三角形?若存在.求出點(diǎn)M的坐標(biāo).若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)如圖,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點(diǎn).點(diǎn)Ax軸正半軸上.點(diǎn)E是邊AB上的—個(gè)動點(diǎn)(不與點(diǎn)AB重合),過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F.

(1)若△OAE、△OCF的而積分別為.且,求k的值.

(2)若OA=2,0C=4,問當(dāng)點(diǎn)E運(yùn)動到什么位置時(shí),四邊形OAEF的面積最大,其最大值為多少?

 

查看答案和解析>>

.(本題滿分12分) 如圖,在平面直角坐標(biāo)系中,四邊形OABC為直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
【小題1】(1)如圖①,若點(diǎn)P、Q分別從點(diǎn)C、A同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位的速度由C向B運(yùn)動,點(diǎn)Q以每秒4個(gè)單位的速度由A向O運(yùn)動,當(dāng)點(diǎn)Q停止運(yùn)動時(shí),點(diǎn)P也停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒(0≤t≤4).
①求當(dāng)t為多少時(shí),四邊形PQAB為平行四邊形?(4分)
②求當(dāng)t為多少時(shí),直線PQ將梯形OABC分成左右兩部分的比為1:2,并求出此時(shí)直線PQ的解析式. (4分)
【小題2】(2)如圖②,若點(diǎn)P、Q分別是線段BC、AO上的任意兩點(diǎn)(不與線段BC、AO的端點(diǎn)重合),且四邊形OQPC面積為10,試說明直線PQ一定經(jīng)過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo). (4分)

查看答案和解析>>

(本小題滿分10分)如圖,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點(diǎn).點(diǎn)Ax軸正半軸上.點(diǎn)E是邊AB上的—個(gè)動點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)E的反比例函數(shù)的圖象與邊BC交于點(diǎn)F.

(1)若△OAE、△OCF的而積分別為.且,求k的值.

(2)若OA=2,0C=4,問當(dāng)點(diǎn)E運(yùn)動到什么位置時(shí),四邊形OAEF的面積最大,其最大值為多少?

 

查看答案和解析>>

.(本題滿分12分) 如圖,在平面直角坐標(biāo)系中,四邊形OABC為直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
小題1:(1)如圖①,若點(diǎn)P、Q分別從點(diǎn)C、A同時(shí)出發(fā),點(diǎn)P以每秒2個(gè)單位的速度由C向B運(yùn)動,點(diǎn)Q以每秒4個(gè)單位的速度由A向O運(yùn)動,當(dāng)點(diǎn)Q停止運(yùn)動時(shí),點(diǎn)P也停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒(0≤t≤4).
①求當(dāng)t為多少時(shí),四邊形PQAB為平行四邊形?(4分)
②求當(dāng)t為多少時(shí),直線PQ將梯形OABC分成左右兩部分的比為1:2,并求出此時(shí)直線PQ的解析式. (4分)
小題2:(2)如圖②,若點(diǎn)P、Q分別是線段BC、AO上的任意兩點(diǎn)(不與線段BC、AO的端點(diǎn)重合),且四邊形OQPC面積為10,試說明直線PQ一定經(jīng)過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo). (4分)

查看答案和解析>>

(本題滿分10分)

如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標(biāo)系中,動點(diǎn)M、N以每秒1個(gè)單位的速度分別從點(diǎn)A、C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個(gè)動點(diǎn)運(yùn)動了t秒時(shí),過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.

(1)點(diǎn)B的坐標(biāo)為   ;用含t的式子表示點(diǎn)P的坐標(biāo)為     ;(3分)

(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0 < t < 6);并求t為何值時(shí),S有最大值?(4分)

(3)試探究:當(dāng)S有最大值時(shí),在y軸上是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.(3分)

 

查看答案和解析>>


同步練習(xí)冊答案