B. 查看更多

 

題目列表(包括答案和解析)

B.已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
C.在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長為2
3
,求實數(shù)a的值.

查看答案和解析>>

B.(不等式選做題)若關(guān)于x的方程x2+x+|a-
14
|+|a|=0(a∈R)
有實根,則a的取值范圍是
 

查看答案和解析>>

B.選修4-2:矩陣與變換

試求曲線在矩陣MN變換下的函數(shù)解析式,其中M =,N =

查看答案和解析>>

B.選修4-2:矩陣與變換
已知矩陣A,其中,若點在矩陣A的變換下得到
(1)求實數(shù)的值;
(2)矩陣A的特征值和特征向量.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

 

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

B

C

A

A

C

D

B

D

C

C

1.B.因。

2..因,

3.B. 因為的定義域為[0,2],所以對,。

4. 函數(shù)為增函數(shù)

5. ,…,

6.    

7.  .由題知,垂足的軌跡為以焦距為直徑的圓,則

,所以

8.  

9. .

10...函數(shù)

11..一天顯示的時間總共有種,和為23總共有4種,故所求概率為.

12..當(dāng)時,顯然成立

當(dāng)時,顯然不成立;當(dāng)顯然成立;

當(dāng),則兩根為負(fù),結(jié)論成立

 

二、填空題:本大題共4小題,每小題4分,共16分。

13.        14..            15. 5        16. A、B、D

13.依題意

14.

15. 易求得、到球心的距離分別為3、2,類比平面內(nèi)圓的情形可知當(dāng)、與球心共線時,取最大值5。

16., ∴

的中點,則, ∴

設(shè),    則,而,∴

,∴

∴真命題的代號是

三、解答題:本大題共6小題,共74分。

17.解:(1)由

,           

于是=.          

(2)因為

所以          

      

的最大值為.      

 

18.解:(1)令A(yù)表示兩年后柑桔產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量這一事件

 

(2)令B表示兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量這一事件

 

19.(1)設(shè)的公差為的公比為,則為正整數(shù),

,      

依題意有

解得(舍去)      

(2) 

    

        

 

20.解 :(1)證明:依題設(shè),的中位線,所以

∥平面,所以。

的中點,所以,

。              

因為,

所以⊥面,則

因此⊥面。

(2)作,連。

因為⊥平面,

根據(jù)三垂線定理知,,              

就是二面角的平面角。       

,則,則的中點,則。

設(shè),由得,,解得,

中,,則,。

所以,故二面角。

 

解法二:(1)以直線分別為軸,建立空間直角坐標(biāo)系,

  

所以

所以         

所以平面           

,故:平面

 

(2)由已知設(shè)

共線得:存在

同理:

設(shè)是平面的一個法向量,

是平面的一個法量

              

所以二面角的大小為                 

21. 解:(1)因為

           

時,根的左右的符號如下表所示

極小值

極大值

極小值

 

所以的遞增區(qū)間為        

的遞減區(qū)間為          

(2)由(1)得到,

                          

要使的圖像與直線恰有兩個交點,只要, 

.                        

 

22.(1)證明:設(shè),

則直線的方程:       

即:

上,所以①   

又直線方程:

得:

所以     

同理,

所以直線的方程:   

將①代入上式得,即點在直線

所以三點共線                           

(2)解:由已知共線,所以 

為直徑的圓的方程:

所以(舍去),        

 

要使圓與拋物線有異于的交點,則

所以存在,使以為直徑的圓與拋物線有異于的交點 


同步練習(xí)冊答案