橢圓的離心率為 , 查看更多

 

題目列表(包括答案和解析)

橢圓的離心率為,且過點直線與橢圓M交于AC兩點,直線與橢圓M交于B、D兩點,四邊形ABCD是平行四邊形

1)求橢圓M的方程;

2)求證:平行四邊形ABCD的對角線ACBD相交于原點O

3)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值

 

查看答案和解析>>

橢圓的離心率為,且經(jīng)過點過坐標(biāo)原點的直線均不在坐標(biāo)軸上,與橢圓M交于A、C兩點,直線與橢圓M交于B、D兩點

1)求橢圓M的方程;

2)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值

 

查看答案和解析>>

橢圓的離心率為,兩焦點分別為,點M是橢圓C上一點,的周長為16,設(shè)線段MO(O為坐標(biāo)原點)與圓交于點N,且線段MN長度的最小值為.

(1)求橢圓C以及圓O的方程;

(2)當(dāng)點在橢圓C上運動時,判斷直線與圓O的位置關(guān)系.

 

查看答案和解析>>

橢圓的離心率為,兩焦點分別為,點是橢圓C上一點,的周長為16,設(shè)線段MOO為坐標(biāo)原點)與圓交于點N,且線段MN長度的最小值為.

(1)求橢圓C以及圓O的方程;

(2)當(dāng)點在橢圓C上運動時,判斷直線與圓O的位置關(guān)系.

 

查看答案和解析>>

橢圓的離心率為,右焦點到直線的距離為,過的直線交橢圓于兩點.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 若直線軸于,,求直線的方程.

 

查看答案和解析>>

一、選擇題:BDCCB   BADCA

二、填空題:    11.  2            12.     

13.       14.

三、解答題:

15、解:依題意得:(1)=0,解之得m=0或m=3

∴當(dāng)m=0或m=3時,復(fù)數(shù)是實數(shù); ……………4分

(2)≠0,解之得m≠0且m≠3

∴當(dāng)m≠0且m≠3時,復(fù)數(shù)是虛數(shù);……………8分

(3),解之得m=3

∴當(dāng)m=3時,復(fù)數(shù)是純虛數(shù).      ……………12分

16、解:(1)∵      ∴  兩邊平方相加,

   即  .       ………………4分

∴曲線是長軸在x軸上且為10,短軸為8,中心在原點的橢圓.   ………6分

(2)∵∴由代入

                    ……………10分

∴它表示過(0,)和(1, 0)的一條直線.               …………12分

 

 

 

 

 

17、解:(Ⅰ),                                  ………1分

.                               ………2分

            ,.                            ………4分

        橢圓的方程為,                       ………5分

因為                               ………6分

所以離心率.                           ………8分

(Ⅱ)設(shè)的中點為,則點.           ………10分

又點K在橢圓上,則中點的軌跡方程為  ………14分

 

 

18、解:(1)列出2×2列聯(lián)表

 

 

說謊

不說謊

合計

女生

15

5

20

男生

10

20

30

合計

25

25

50

…………6分

(2)假設(shè)H0 "說謊與性別無關(guān)",則隨機變量K2的觀測值:

                  ……………10分

,而             ……………………12分

所以有99.5%的把握認(rèn)為"說謊與性別有關(guān)".          ……………14分

 

 

 

 

 

 

 

 

 

 

 

 

19、解:(1)

………………4分

(2),0×5+1×7+2×8+3×11+4×19=132,

         …………8分

 

故Y關(guān)于x的線性回歸方程為 y=3.2x+3.6         ………10分

(3)x=5,y=196(萬)

據(jù)此估計2005年.該 城市人口總數(shù)196(萬)            ………14分

 

 

 

 

 

 

 

 

 

 

 

 

20、解:(1)設(shè)橢圓的半焦距為,依題意   ………2分

 

,∴  所求橢圓方程為.         ………4分

 

(2)設(shè),

當(dāng)軸時,.                                ………5分

當(dāng)軸不垂直時,設(shè)直線的方程為.        ………6分

由已知,得.                 ………7分

代入橢圓方程,整理得,………8分

,.………10分

.     ………12分

當(dāng)且僅當(dāng),即時等號成立.當(dāng)時,,

綜上所述.                                      ………13分

當(dāng)最大時,面積取最大值.………14分

 

 


同步練習(xí)冊答案