圖(14) (1)用b表示點E的坐標(biāo), (2)求實數(shù)b的取值范圍, 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x+3的圖象與x軸交于點A,與y軸交于點B,動點P從點B出發(fā)沿BA向終點A運動,同時動點Q從點O出發(fā)沿OB向點B運動,到達(dá)點B后立刻以原來的速度沿BO返回.點P,Q運動速度均為每秒1個單位長度,當(dāng)點P到達(dá)點A時停止運動,點Q也同時停止.連結(jié)PQ,設(shè)運動時間為t(t>0)秒.
(1)求點P的坐標(biāo)(用含t的代數(shù)式表示);
(2)當(dāng)點Q從點O向點B運動時(未到達(dá)點B),是否存在實數(shù)t,使得△BPQ的面積大于17若存在,請求出t的取值范圍;若不存在,請說明理由;
(3)伴隨著P,Q兩點的運動,線段PQ的垂直平分線為直線l.是否存在t的值,使得直線l經(jīng)過點O?若存在,請求出所有t的值;若不存在,請說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x+3的圖象與x軸交于點A,與y軸交于點B,動點P從點B出發(fā)沿BA向終點A運動,同時動點Q從點O出發(fā)沿OB向點B運動,到達(dá)點B后立刻以原來的速度沿BO返回.點P,Q運動速度均為每秒1個單位長度,當(dāng)點P到達(dá)點A時停止運動,點Q也同時停止.連結(jié)PQ,設(shè)運動時間為t(t>0)秒.
(1)求點P的坐標(biāo)(用含t的代數(shù)式表示);
(2)當(dāng)點Q從點O向點B運動時(未到達(dá)點B),是否存在實數(shù)t,使得△BPQ的面積大于17若存在,請求出t的取值范圍;若不存在,請說明理由;
(3)伴隨著P,Q兩點的運動,線段PQ的垂直平分線為直線l.是否存在t的值,使得直線l經(jīng)過點O?若存在,請求出所有t的值;若不存在,請說明理由.

查看答案和解析>>

如圖,拋物線的圖象與軸交于兩點,與軸交于點,其中點的坐標(biāo)為;直線與拋物線交于點,與軸交于點,且

(1)用表示點的坐標(biāo);

(2)求實數(shù)的取值范圍;

(3)請問的面積是否有最大值?若有,求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,直線y=-
34
x+6交x軸于點A,交y軸于點B.點P,點Q同時從原點出發(fā)作勻速運動,點P沿x軸正方向運動,點Q沿OB→BA方向運動,并同時到達(dá)點A.點P運動的速度為1厘米/秒.
(1)求點Q運動的速度;
(2)當(dāng)點Q運動到線段BA上時,設(shè)點P運動的時間為x(秒),△POQ的面積為y(平方厘米),那么用x的代數(shù)式表示AQ=
 
,并求y與x的函數(shù)關(guān)系式;
(3)若將(2)中所得函數(shù)的自變量x的取值范圍擴大到任意實數(shù)后,其函數(shù)圖象上是否存在點M,使得點M與該函數(shù)圖象和x軸的兩個交點所組成的三角形面積等于△AOB的面積?若存在,求出點M的坐標(biāo);若不存在,請說明精英家教網(wǎng)理由.

查看答案和解析>>

如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長分別為m、4m(m>0),D為邊AB的中點,一拋物線l經(jīng)過點A、D及點M(-1,-1-m).
(1)求拋物線l的解析式(用含m的式子表示);
(2)把△OAD沿直線OD折疊后點A落在點A′處,連接OA′并延長與線段BC的延長線交于點E,若拋物線l與線段CE相交,求實數(shù)m的取值范圍;
(3)在滿足(2)的條件下,求出拋物線l頂點P到達(dá)最高位置時的坐標(biāo).

查看答案和解析>>


同步練習(xí)冊答案