題目列表(包括答案和解析)
設(shè),證明:
(Ⅰ)當(dāng)x﹥1時(shí), ﹤ ( );
(Ⅱ)當(dāng)時(shí),。
一. 選擇題
1A 2D 3B 4D 5C 6A 7B 8C 9B 10A 11D 12C
二. 13: 14: 1 15: 16:
(1).復(fù)數(shù) ( )
A.2 B.-2 C. D.
解:,選A。
(2).集合,則下列結(jié)論正確的是( )
A. B.
C. D.
解: ,,又
∴ ,選D。
(3).在平行四邊形ABCD中,AC為一條對(duì)角線(xiàn),若,,則( )
A. (-2,-4) B.(-3,-5) C.(3,5) D.(2,4)
解:因?yàn)?sub>,選B。
(4).已知是因?yàn)?sub>,選B。。
兩條不同直線(xiàn),是三個(gè)不同平面,下列命題中正確的是( )
A. B.
C. D.
解: 均為直線(xiàn),其中平行,可以相交也可以異面,故A不正確;
m,n⊥α則同垂直于一個(gè)平面的兩條直線(xiàn)平行;選D。
(5).將函數(shù)的圖象按向量平移后所得的圖象關(guān)于點(diǎn)中心對(duì)稱(chēng),則向量的坐標(biāo)可能為( )
A. B. C. D.
解:設(shè)平移向量,則函數(shù)按向量平移后的表達(dá)式為
,因?yàn)閳D象關(guān)于點(diǎn)中心對(duì)稱(chēng),
故代入得: ,,
k=0得:,選C。本題也可以從選擇支出發(fā),逐個(gè)排除也可。
(6).設(shè)則中奇數(shù)的個(gè)數(shù)為( )
A.2 B.3 C.4 D.5
解:由題知,逐個(gè)驗(yàn)證知,其它為偶數(shù),選A。
(7).是方程至少有一個(gè)負(fù)數(shù)根的( )
A.必要不充分條件 B.充分不必要條件
C.充分必要條件 D.既不充分也不必要條件
解:當(dāng),得a<1時(shí)方程有根。a<0時(shí),,方程有負(fù)根,又a=1時(shí),方程根為,所以選B
(8).若過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)有公共點(diǎn),則直線(xiàn)的斜率的取值范圍為( ) A. B. C. D.
解:設(shè)直線(xiàn)方程為,即,直線(xiàn)與曲線(xiàn)有公共點(diǎn),
圓心到直線(xiàn)的距離小于等于半徑 ,
得,選擇C
另外,數(shù)形結(jié)合畫(huà)出圖形也可以判斷C正確。
(9).在同一平面直角坐標(biāo)系中,函數(shù)的圖象與的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)。而函數(shù)的圖象與的圖象關(guān)于軸對(duì)稱(chēng),若,則的值是( )
A. B. C. D.
解:由題知則,選D。
(10).設(shè)兩個(gè)正態(tài)分布和的密度函數(shù)圖像如圖所示。則有( )
A.
B.
C.
D.
解:根據(jù)正態(tài)分布函數(shù)的性質(zhì):正態(tài)分布曲線(xiàn)是一條關(guān)于對(duì)稱(chēng),在處取得最大值的連續(xù)鐘形曲線(xiàn);越大,曲線(xiàn)的最高點(diǎn)越底且彎曲較平緩;反過(guò)來(lái),越小,曲線(xiàn)的最高點(diǎn)越高且彎曲較陡峭,選A。
(11).若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿(mǎn)足,則有( )
A. B.
C. D.
解: 用代換x得: ,
解得:,而單調(diào)遞增且大于等于0,,選D。
(12)12名同學(xué)合影,站成前排4人后排8人,現(xiàn)攝影師要從后排8人中抽2人調(diào)整到前排,若其他人的相對(duì)順序不變,則不同調(diào)整方法的總數(shù)是( )
A. B. C. D.
解:從后排8人中選2人共種選法,這2人插入前排4人中且保證前排人的順序不變,則先從4人中的5個(gè)空擋插入一人,有5種插法;余下的一人則要插入前排5人的空擋,有6種插法,故為;綜上知選C。
(13).函數(shù)的定義域?yàn)?u> .
解:由題知:;解得:x≥3.
(14)在數(shù)列在中,,,,其中為常數(shù),則的值是
解: ∵∴從而。
∴a=2,,則
(15)若為不等式組表示的平面區(qū)域,則當(dāng)從-2連續(xù)變化到1時(shí),動(dòng)直線(xiàn) 掃過(guò)中的那部分區(qū)域的面積為
解:如圖知是斜邊為3 的等腰直角三角形,是直角邊為1等腰直角三角形,區(qū)域的面積
(16)已知在同一個(gè)球面上,若
,則兩點(diǎn)間的球面距離是
解: 如圖,易得,,,則此球內(nèi)接長(zhǎng)方體三條棱長(zhǎng)為AB、BC、CD(CD的對(duì)邊與CD等長(zhǎng)),從而球外接圓的直徑為,R=4則BC與球心構(gòu)成的大圓如圖,因?yàn)椤鱋BC為正三角形,則B,C兩點(diǎn)間的球面距離是。
三. 解答題
17解:(1)
由
函數(shù)圖象的對(duì)稱(chēng)軸方程為
(2)
因?yàn)?sub>在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
所以 當(dāng)時(shí),去最大值 1
又 ,當(dāng)時(shí),取最小值
所以 函數(shù) 在區(qū)間上的值域?yàn)?sub>
18 方法一(綜合法)
(1)取OB中點(diǎn)E,連接ME,NE
又
(2)
為異面直線(xiàn)與所成的角(或其補(bǔ)角)
作連接
,
所以 與所成角的大小為
(3)點(diǎn)A和點(diǎn)B到平面OCD的距離相等,連接OP,過(guò)點(diǎn)A作
于點(diǎn)Q,
又 ,線(xiàn)段AQ的長(zhǎng)就是點(diǎn)A到平面OCD的距離
,
,所以點(diǎn)B到平面OCD的距離為
方法二(向量法)
作于點(diǎn)P,如圖,分別以AB,AP,AO所在直線(xiàn)為軸建立坐標(biāo)系
,
(1)
設(shè)平面OCD的法向量為,則
即
取,解得
(2)設(shè)與所成的角為,
, 與所成角的大小為
(3)設(shè)點(diǎn)B到平面OCD的交流為,則為在向量上的投影的絕對(duì)值,
由 , 得.所以點(diǎn)B到平面OCD的距離為
19 (1)由得,從而
的分布列為
0
1
2
3
4
5
6
(2)記”需要補(bǔ)種沙柳”為事件A, 則
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com