題目列表(包括答案和解析)
已知,討論方程所表示的圓錐曲線類(lèi)型,并求其焦點(diǎn)坐標(biāo)
如圖,給出定點(diǎn)A(a,0) (a>0,a≠1)和直線l:x=-1,B是直線l上的動(dòng)點(diǎn),∠BOA的角平分線交AB于點(diǎn)C,求點(diǎn)C的軌跡方程,并討論方程表示的曲線類(lèi)型與a值的關(guān)系.
如圖,給出定點(diǎn)和直線,是直線上的動(dòng)點(diǎn),的角平分線交于點(diǎn),求的軌跡方程,并討論方程表示的曲線類(lèi)型與值的關(guān)系.
一、選擇題(本大題共12小題,每小題5分,共60分)
BCDCA DCBBD BC
二、填空題(本大題共4小題,每小題4分,共16分)
13.24 14. 15.5 16.4
三、解答題(本大題共6小題,共74分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟)
17.解:(1) =0
由正弦定理得:,
若因?yàn)?sub>所以,故
若,因?yàn)?sub>,所以,故
綜上或
18.解:(1)
當(dāng)時(shí),
兩式相減得
即
當(dāng)時(shí),數(shù)列是等比數(shù)列
要使數(shù)列是等比數(shù)列,
當(dāng)且僅當(dāng),即
從而
(2)設(shè)數(shù)列的公差為
由得
故可設(shè)
又
右題意知
解得
又等差數(shù)列的前項(xiàng)和有最大值,
從而
19.解:(1)平面
證明:因?yàn)?sub>平面,所以,
又在中,,所以,又
所以,平面,
又在中,、分別是、上的動(dòng)點(diǎn),且
平面平面,
所以,不論為何值,總有平面;
(2)解:在中,,,所以,
又平面,所以,
又在中,,
由(1)知平面,
所以,三棱錐的體積是
20.解:(1)的所有可能取值為0,1,2,依題意得:
的分布列為
0
1
2
P
(2)設(shè)“甲、乙都不被選中”的事件為,則
所求概率為
(3)記“男生甲被選中”為事件,“女生乙被選中”為事件,
(或直接得)
21.解:(1)甲得是的中點(diǎn)
設(shè)依題意得:
消去,整理得
當(dāng)時(shí),方程表示焦點(diǎn)在軸上的橢圓;
當(dāng)時(shí),方程表示焦點(diǎn)在軸上的橢圓;
當(dāng)時(shí),方程表示圓。
(Ⅱ)由,焦點(diǎn)在軸上的橢圓,直線與曲線恒有兩交點(diǎn),
因?yàn)橹本斜率不存在時(shí)不符合題意,
可設(shè)直線的方程為 ,直線與橢圓的交點(diǎn)為
要使為銳角,則有
即
可得,對(duì)于任意恒成立
而。
所以滿足條件的的取值范圍是
22.解:(1)當(dāng)時(shí),
所以,在上是單調(diào)遞增,
(2)的定義域是
當(dāng)時(shí),,所以,
當(dāng)時(shí),,所以,,
所以,在上單調(diào)遞減,在上,單調(diào)遞增,
所以,
(3)由(2)知在上是單調(diào)遞增函數(shù),
若存在滿足條件,則必有,
也即方程在上有兩個(gè)不等的實(shí)根
但方程即只有一個(gè)實(shí)根
所以,不存在滿足條件的實(shí)數(shù)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com