已知.如圖.直線: 與軸交于點(diǎn).與直線交于軸上同一點(diǎn).直線交軸于點(diǎn).且點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱. 查看更多

 

題目列表(包括答案和解析)

已知,如圖,直線l1y=-
32
x+3
與y軸交于點(diǎn)A,與直線l2交于x軸上同一點(diǎn)B,直線l2交y軸于點(diǎn)C,且點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱.
(1)求直線l2的解析式;
(2)若點(diǎn)P是直線l1上任意一點(diǎn),求證:點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)P′一定在直線l2上;
(3)設(shè)D(0,-1),平行于y軸的直線x=t分別交直線l1和l2于點(diǎn)E、F.是否存在t的值,使得以A精英家教網(wǎng)、D、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知,如圖,直線l1數(shù)學(xué)公式與y軸交于點(diǎn)A,與直線l2交于x軸上同一點(diǎn)B,直線l2交y軸于點(diǎn)C,且點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱.
(1)求直線l2的解析式;
(2)若點(diǎn)P是直線l1上任意一點(diǎn),求證:點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)P′一定在直線l2上;
(3)設(shè)D(0,-1),平行于y軸的直線x=t分別交直線l1和l2于點(diǎn)E、F.是否存在t的值,使得以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知,如圖,直線l1y=-
3
2
x+3
與y軸交于點(diǎn)A,與直線l2交于x軸上同一點(diǎn)B,直線l2交y軸于點(diǎn)C,且點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱.
(1)求直線l2的解析式;
(2)若點(diǎn)P是直線l1上任意一點(diǎn),求證:點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)P′一定在直線l2上;
(3)設(shè)D(0,-1),平行于y軸的直線x=t分別交直線l1和l2于點(diǎn)E、F.是否存在t的值,使得以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

精英家教網(wǎng)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對(duì)角線AC相切于點(diǎn)F,過P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過點(diǎn)B,此時(shí)直線的解析式是y=2x+1.
(1)求BC、AP1的長;
(2)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(3)以點(diǎn)E為圓心作⊙E與x軸相切.
①探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍;
②當(dāng)直線L把矩形ABCD分成兩部分的面積之比值為3:5時(shí),則⊙P和⊙E的位置關(guān)系如何并說明理由.

查看答案和解析>>

精英家教網(wǎng)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為
AD邊上一動(dòng)點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對(duì)角線AC相切于點(diǎn)F,過P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1位置時(shí),直線L恰好經(jīng)過點(diǎn)B,此時(shí)直線的解析式是y=2x+1,
(Ⅰ)求BC、AP1的長;
(Ⅱ)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(Ⅲ)以點(diǎn)E為圓心作⊙E與x軸相切,探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案