題目列表(包括答案和解析)
(本小題滿(mǎn)分13分)
已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線(xiàn),使得直線(xiàn)與橢圓C有公共點(diǎn),且直線(xiàn)OA與的距離等于4?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由。
【命題意圖】本小題主要考查直線(xiàn)、橢圓等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。
(本小題滿(mǎn)分13分)
已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線(xiàn),使得直線(xiàn)與橢圓C有公共點(diǎn),且直線(xiàn)OA與的距離等于4?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由。
【命題意圖】本小題主要考查直線(xiàn)、橢圓等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。
設(shè)拋物線(xiàn):(>0)的焦點(diǎn)為,準(zhǔn)線(xiàn)為,為上一點(diǎn),已知以為圓心,為半徑的圓交于,兩點(diǎn).
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若,,三點(diǎn)在同一條直線(xiàn)上,直線(xiàn)與平行,且與只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到,距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線(xiàn)的定義、直線(xiàn)與拋物線(xiàn)的位置關(guān)系、點(diǎn)到直線(xiàn)距離公式、線(xiàn)線(xiàn)平行等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想和運(yùn)算求解能力.
【解析】設(shè)準(zhǔn)線(xiàn)于軸的焦點(diǎn)為E,圓F的半徑為,
則|FE|=,=,E是BD的中點(diǎn),
(Ⅰ) ∵,∴=,|BD|=,
設(shè)A(,),根據(jù)拋物線(xiàn)定義得,|FA|=,
∵的面積為,∴===,解得=2,
∴F(0,1), FA|=, ∴圓F的方程為:;
(Ⅱ) 解析1∵,,三點(diǎn)在同一條直線(xiàn)上, ∴是圓的直徑,,
由拋物線(xiàn)定義知,∴,∴的斜率為或-,
∴直線(xiàn)的方程為:,∴原點(diǎn)到直線(xiàn)的距離=,
設(shè)直線(xiàn)的方程為:,代入得,,
∵與只有一個(gè)公共點(diǎn), ∴=,∴,
∴直線(xiàn)的方程為:,∴原點(diǎn)到直線(xiàn)的距離=,
∴坐標(biāo)原點(diǎn)到,距離的比值為3.
解析2由對(duì)稱(chēng)性設(shè),則
點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng)得:
得:,直線(xiàn)
切點(diǎn)
直線(xiàn)
坐標(biāo)原點(diǎn)到距離的比值為
1 |
x+a |
1 |
x+a |
1 |
x+a |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com