當時取得極大值.且函數(shù)的圖象關(guān)于點對稱. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,!上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調(diào)遞增。∴最大值為。

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

設(shè)定義在R的函數(shù),R. 當時,取得極大值,且函數(shù)的圖象關(guān)于點對稱.

 (I)求函數(shù)的表達式;

 (II)判斷函數(shù)的圖象上是否存在兩點,使得以這兩點為切點的切線互相垂直,且切點的橫坐標在區(qū)間上,并說明理由;

 (III)設(shè)),求證:.

查看答案和解析>>

設(shè)定義在R的函數(shù)R. 當時,取得極大值,且函數(shù)的圖象關(guān)于點對稱.
(I)求函數(shù)的表達式;
(II)判斷函數(shù)的圖象上是否存在兩點,使得以這兩點為切點的切線互相垂直,且切點的橫坐標在區(qū)間上,并說明理由;
 (III)設(shè),),求證:.

查看答案和解析>>

設(shè)定義在R上的函數(shù)f(x)=ax3+bx2+cx,當時,f(x)取得極大值,并且函數(shù)y=f'(x)的圖象關(guān)于y軸對稱.
(1)求f(x)的表達式;
(2)若曲線C對應(yīng)的解析式為,求曲線C過點P(2,4)的切線方程;
(3)(實)過點可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

查看答案和解析>>

設(shè)定義在R上的函數(shù)f(x)=ax3+bx2+cx,當x=-時,f(x)取得極大值,并且函數(shù)y=f′(x)的圖象關(guān)于y軸對稱.
(Ⅰ)求f(x)的表達式;
(Ⅱ)若曲線C對應(yīng)的解析式為,求曲線過點P(2,4)的切線方程.

查看答案和解析>>

一、選擇題(本大題共有8個小題,每小題5分,共40分;在每個小題給出的四個選項中有且僅有一個符合題目要求的)

題號

1

2

3

4

5

6

7

8

答案

B

D

C

C

B

A

C

B

二、填空題(本大題共有6個小題,每小題5分,共30分;請把答案填在相應(yīng)的位置)

題號

9

10

11

12

13

14

答案

-1+

8,70

24

①③④

三、解答題(本大題共6個小題,共80分;解答應(yīng)寫出文字說明,證明過程或演算步驟)

15.(本題滿分13分)

    解:(1)

           

           

       (2)由題意,得

           

16.(本題滿分13分)

    解:(1)這3封信分別被投進3個信箱的概率為

           

       (2)恰有2個信箱沒有信的概率為

           

       (3)設(shè)信箱中的信箱數(shù)為

                    

                    

0

1

2

3

17.(本題滿分13分)

    解:解答一:(1)在菱形中,連接是等邊三角形。

                  

(2)

                  

                  

              (3)取中點,連結(jié)

                  

     解法二:(1)同解法一;

            (2)過點平行線交,以點為坐標原點,建立如圖的坐標系

                  

                   二面角的大小為

              (3)由已知,可得點

                  

                   即異面直線所成角的余弦值為

18.(本題滿分13分)

解:(1)將函數(shù)的圖象向右平移一個單位,得到函數(shù)的圖象,

        函數(shù)的圖象關(guān)于點(0,0)對稱,即函數(shù)是奇函數(shù),

       

       

        由題意得:

        所以

   (2)由(1)可得

        故設(shè)所求兩點為

       

        滿足條件的兩點的坐標為:

(3)

       

       

19.(本題滿分14分)

解:(1)橢圓的右焦點的坐標為(1,0),

       

(2)

      

  (3)由(2)知

      

20.(本題滿分14分)

解:(1)

           

       (2)由(1)知

           

       (3)

           

 

 


同步練習冊答案