14.設(shè)函數(shù)的定義在R上的偶函數(shù).且是以4為周期的周期函數(shù).當(dāng)時(shí).的大小關(guān)系為 . 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)是定義在R上的偶函數(shù),且對(duì)任意的恒有
已知當(dāng)時(shí),,則其中所有正確命題的序號(hào)是_____________。
① 2是函數(shù)的周期;②函數(shù)上是減函數(shù),在上是增函數(shù);
③函數(shù)大值是1,最小值是0;④當(dāng)時(shí),。

查看答案和解析>>

設(shè)函數(shù)是定義在R上的偶函數(shù),且對(duì)任意的恒有,

已知當(dāng)時(shí),,則其中所有正確命題的序號(hào)是_____________.

 ① 2是函數(shù)的周期; ② 函數(shù)上是減函數(shù),在上是增函數(shù);

 ③ 函數(shù)的最大值是1,最小值是0; ④ 當(dāng)時(shí),.

 

查看答案和解析>>

 

設(shè)函數(shù)是定義在R上的偶函數(shù),且對(duì)于任意的恒有,已知當(dāng)

時(shí),.則

①2是的周期;

②函數(shù)在(2,3)上是增函數(shù);

③函數(shù)的最大值為1,最小值為0;

④直線是函數(shù)圖象的一條對(duì)稱軸.

其中所有正確命題的序號(hào)是____

 

查看答案和解析>>

 

設(shè)函數(shù)是定義在R上的偶函數(shù),且對(duì)于任意的恒有,已知當(dāng)

時(shí),.則

①2是的周期;

②函數(shù)在(2,3)上是增函數(shù);

③函數(shù)的最大值為1,最小值為0;

④直線是函數(shù)圖象的一條對(duì)稱軸.

其中所有正確命題的序號(hào)是____

 

查看答案和解析>>

設(shè)函數(shù)是定義在R上的偶函數(shù),且對(duì)任意的恒有

已知當(dāng)時(shí),,則其中所有正確命題的序號(hào)是_____________。

① 2是函數(shù)的周期; ② 函數(shù)上是減函數(shù),在上是增函數(shù);

③ 函數(shù)的最大值是1,最小值是0; ④ 當(dāng)時(shí),。

 

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①③

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標(biāo)系

       則       2分

       由  1分

      

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

      

      

      

       即異面直線CM與FD所成角的大小為   3分

   (III)解:平面ADF,

       平面ADF的法向量為      1分

       設(shè)平面BDF的法向量為

       由

            1分

      

          1分

       由圖可知二面角A―DF―B的大小為   1分

19.解:(I)設(shè)該小組中有n個(gè)女生,根據(jù)題意,得

      

       解得n=6,n=4(舍去)

       該小組中有6個(gè)女生。        5分

   (II)由題意,的取值為0,1,2,3。      1分

      

      

      

             4分

       的分布列為:

0

1

2

3

P

       …………1分

        3分

20.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

               3分

            1分

   (II)由題意,知直線AB的斜率必存在。

       設(shè)直線AB的方程為

       由,

       顯然

      

             2分

       由雙曲線和ABCD的對(duì)稱性,可知A與C、B與D關(guān)于原點(diǎn)對(duì)稱。

       而    1分

           

       點(diǎn)O到直線的距離   2分

      

      

      

               1分

21.解:(I)

      

              3分

   (Ⅱ)     1分

      

       上單調(diào)遞增;

       又當(dāng)

       上單調(diào)遞減。      1分

       只能為的單調(diào)遞減區(qū)間,

      

       的最小值為0。

   (III)

      

      

       于是函數(shù)是否存在極值點(diǎn)轉(zhuǎn)化為對(duì)方程內(nèi)根的討論。

       而

            1分

       ①當(dāng)

       此時(shí)有且只有一個(gè)實(shí)根

                           

       存在極小值點(diǎn)     1分

       ②當(dāng)

       當(dāng)單調(diào)遞減;

       當(dāng)單調(diào)遞增。

             1分

       ③當(dāng)

       此時(shí)有兩個(gè)不等實(shí)根

      

       單調(diào)遞增,

       單調(diào)遞減,

       當(dāng)單調(diào)遞增,

       ,

       存在極小值點(diǎn)      1分

       綜上所述,對(duì)時(shí),

       存在極小值點(diǎn)

       當(dāng)    

       當(dāng)存在極小值點(diǎn)

       存在極大值點(diǎn)      1分

   (注:本小題可用二次方程根的分布求解。)

22.(I)解:由題意,      1分

             1

       為首項(xiàng),為公比的等比數(shù)列。

                 1分

            1分

   (Ⅱ)證明:

      

      

       構(gòu)造輔助函數(shù)

      

       單調(diào)遞增,

      

       令

       則

      

               4分

   (III)證明:

      

      

      

       時(shí),

      

      

       (當(dāng)且僅當(dāng)n=1時(shí)取等號(hào))。      3分

       另一方面,當(dāng)時(shí),

      

      

      

      

      

      

       (當(dāng)且僅當(dāng)時(shí)取等號(hào))。

       (當(dāng)且僅當(dāng)時(shí)取等號(hào))。

       綜上所述,有      3分

 


同步練習(xí)冊(cè)答案