(Ⅰ) 求的值以及數(shù)列的通項公式, 查看更多

 

題目列表(包括答案和解析)

數(shù)列的前n項和。

   (1)求證:數(shù)列是等比數(shù)列,并求的通項公式;

   (2)如果對任意恒成立,求實數(shù)k的取值范圍。

【解析】本試題主要是考查了等比數(shù)列的定義的運用,以及運用遞推關(guān)系求解數(shù)列通項公式的運用,并且能借助于數(shù)列的和,放縮求證不等式的綜合試題。

 

查看答案和解析>>

數(shù)列中,,前項和滿足。

(Ⅰ)求數(shù)列的通項公式,以及前項和;

(Ⅱ)若,成等差數(shù)列,求實數(shù)的值。

 

查看答案和解析>>

數(shù)列{an}中,a1=,前n項和Sn滿足
(I)求數(shù)列{an}的通項公式an以及前n項和Sn
(Ⅱ)若S1,t(S1+S2),3(S2+S3)成等差數(shù)列,求實數(shù)t的值。

查看答案和解析>>

數(shù)列{an}中,a1,前n項和Sn滿足

(1)求數(shù)列數(shù)列{an}的通項公式an,以及前n項和Sn;

(2)若S1,t(S1+S2),3(S2+S3)成等差數(shù)列,求實數(shù)t的值.

查看答案和解析>>

若數(shù)列{bn}滿足:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若則{cn}是公差為8的準(zhǔn)等差數(shù)列.
(1)求上述準(zhǔn)等差數(shù)列{cn}的第8項c8、第9項c9以及前9項的和T9
(2)設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項公式;
(3)設(shè)(2)中的數(shù)列{an}的前n項和為Sn,若S63>2012,求a的取值范圍.

查看答案和解析>>

一、選擇題

1. C  2. A  3. C  4. D  5.D   6. B   7. C   8. B

二、填空題

9.   10.   11.  12.  13. ①③  14.(1,2)

三、解答題

15. 解:              1分

                      2分

                              ???3分

(Ⅰ)的最小正周期為;             ???6分

(Ⅱ)由 ,                 7分

,                 8分

     的單調(diào)增區(qū)間為     ???9分

(Ⅲ)因為,即                        10分

                                    11分

                                  ???12分

16.解:(Ⅰ)∵

∴當(dāng)時,則        1分

解得             ???3分

         當(dāng)時,則由       4分

解得                 ??6分

(Ⅱ)   當(dāng)時,       ???7分

                             ???8分

,中各項不為零                     ???9分

                                 ???10分

是以為首項,為公比的數(shù)列            ???11分

                              ???12分

17. (Ⅰ) 證明:∵,

∴ 令,得                    ???1分

                                          ???2分

,得                       ???3分

     

∴函數(shù)為奇函數(shù)                                 ???4分

(Ⅱ) 證明:設(shè),且                        ???5分

            ???6分

又∵當(dāng)

     ∴                          ???7分

    即                                        ???8分

    ∴函數(shù)上是增函數(shù)                             ???9分

(Ⅲ) ∵函數(shù)上是增函數(shù)

     ∴函數(shù)在區(qū)間[-4,4]上也是增函數(shù)              ???10分

∴函數(shù)的最大值為,最小值為              ???11分

                       ???12分

∵函數(shù)為奇函數(shù)

                                 ???13分

故,函數(shù)的最大值為12,最小值為.             ???14分

18. 解:設(shè)甲現(xiàn)在所在位置為A,乙現(xiàn)在所在位置為B,運動t秒后分別到達位置C、D,如圖可知CD即為甲乙的距離.   ??1分

當(dāng)時,   ??2分

          ??3分

              ??5分

時,               ??7分

當(dāng)時,C、B重合,      ??9分

當(dāng)時,

           ??10分

 

              ??12分   

                               ??13分

綜上所述:經(jīng)過2秒后兩人距離最近為.   ??14分

19. 解證:(I)易得                      ???1分

的兩個極值點

的兩個實根,又

                               ???3分

                                   ???5分

                 ???6分

                                      ???8分

(Ⅱ)設(shè)

                            ???10分

              ???11分

上單調(diào)遞減             ???12分

                                 ???13分

的最大值是                                ???14分

20.解:(Ⅰ)當(dāng)時,, ,???1分

數(shù)列為等比數(shù)列,,故           ???2分

                                              ???3分

(Ⅱ)設(shè)數(shù)列公差

根據(jù)題意有:,             ???4分

即:

,,代入上式有:     ???5分

,         ???7分

即關(guān)于不等式有解

                             ???8分

 

當(dāng)時,

                                           ???9分

                                           ???10分

(Ⅲ),記前n項和為          ???11分

         

         ???12分

              ???13分

                              ???14分

 


同步練習(xí)冊答案