C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )

A B C D

 

查看答案和解析>>

.過點(diǎn)作圓的弦,其中弦長為整數(shù)的共有  (  )    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

一、選擇題

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

2,4,6

2,4,6

三、解答題

17.(本小題滿分12分)

       解證:(I)

       由余弦定理得              …………4分

       又                                               …………6分

     (II)

                                          …………10分

                                                          

       即函數(shù)的值域是                                                          …………12分

18.(本小題滿分12分)

       解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

                                                                        …………5分

(II)                   …………6分

                                                         …………7分

              …………9分

                                       …………12分

19.(本小題滿分12分)

     (I)證明:依題意知:

                                      …………2分

     …4分

   (II)由(I)知平面ABCD

       ∴平面PAB⊥平面ABCD.                        …………4分

     在PB上取一點(diǎn)M,作MNAB,則MN⊥平面ABCD,

       設(shè)MN=h

       則

                            …………6分

       要使

       即MPB的中點(diǎn).                                                                  …………8分

           建立如圖所示的空間直角坐標(biāo)系

           則A(0,0,0),B(0,2,0),

           C(1,1,0),D(1,0,0),

           P(0,0,1),M(0,1,

           由(I)知平面,則

           的法向量。                   …………10分

           又為等腰

          

           因?yàn)?sub>

           所以AM與平面PCD不平行.                                                  …………12分

    20.(本小題滿分12分)

           解:(I)已知,

           只須后四位數(shù)字中出現(xiàn)2個(gè)0和2個(gè)1.

                                                 …………4分

       (II)的取值可以是1,2,3,4,5,.

          

                                                                  …………8分

           的分布列是

       

    1

    2

    3

    4

    5

    P

                                                                                                          …………10分

                     …………12分

       (另解:記

           .)

    21.(本小題滿分12分)

           解:(I)設(shè)M,

            由

           于是,分別過A、B兩點(diǎn)的切線方程為

             ①

             ②                           …………2分

           解①②得    ③                                                 …………4分

           設(shè)直線l的方程為

           由

             ④                                               …………6分

           ④代入③得

           即M

           故M的軌跡方程是                                                      …………7分

       (II)

          

                                                                                     …………9分

       (III)

           的面積S最小,最小值是4                      …………11分

           此時(shí),直線l的方程為y=1                                                      …………12分

    22.(本小題滿分14分)

           解:(I)                           …………2分

           由                                                           …………4分

          

           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                         …………6分

           當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                          …………8分

       (II)當(dāng)上單調(diào)遞增,因此

          

                                                                                                          …………10分

           上單調(diào)遞減,

           所以值域是                           …………12分

           因?yàn)樵?sub>

                                                                                                          …………13分

           所以,a只須滿足

           解得

           即當(dāng)、使得成立.

                                                                                                          …………14分

     

     


    同步練習(xí)冊答案