有三堆石子的個數(shù)分別是19、8、9,現(xiàn)在進行如下操作:每次從這三堆中的任意兩堆中各取出一個石子,然后把這2個石子都加到另一堆中去,試問:能否經(jīng)若干次這樣的操作后,使得:
(1)三堆石子的個數(shù)分別是22、2、12?
(2)三堆石子的個數(shù)分別是21、3、12?
如果能,寫出最少次數(shù)完成的操作過程;如果不能,試說明理由.

解:(1)經(jīng)過6次操作可以達到要求:
(19,8,9)?(21,7,8)?(23,6,7)?(25,5,6)?(24,4,8)?(23,3,10)?(22,2,12);
(2)不可能達到要求,
因為每次操作后,每堆石子數(shù)要么加2,要么少1,而19,8,9被3除余數(shù)分別為1,2,0,
經(jīng)過任何一次操作后余數(shù)分別是0,1,2,不可能同時被3整除.
分析:(1)利用每次從這三堆石子中的任意兩堆中各取出1個石子,然后把這2個石子都加到另一堆中去,分別進行實驗即可得出答案;
(2)根據(jù)操作方法得出每堆石子數(shù)要么加2,要么少1,得出三堆石子不可能同時被3整除.
點評:此題主要考查了整數(shù)倍數(shù)的綜合應用,利用數(shù)的整除性規(guī)律得出三堆石子不可能同時被3整除是解決問題的關鍵.
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:

有三堆石子,每堆分別有2013,2010,2011粒.現(xiàn)在對這三堆石子進行如下的“操作”:每次允許從每堆中各拿掉一個或相同個數(shù)的石子,或從任一堆中取出一些石子放入另一堆中.按上述方式進行“操作”,能否把這三堆石子都取光?如行,請設計一種取石子的方案;如不行,請說明理由.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

有三堆石子,每堆分別有1998、998、98粒.現(xiàn)在對這三堆石子進行如下的“操作”:每次允許從每堆中拿掉一個或相同個數(shù)的石子,或從任一堆中取出一些石子放入另一堆中.
按上述方法進行“操作”,能否把這三堆石子都取光?如能,請設計一種取石子的方案;如不能,請說明理由.

查看答案和解析>>

同步練習冊答案