分析 首先根據(jù)題意,設購長途車票有x人,則購短途車票的有50-x人,然后根據(jù):長途車票每張的價格×購長途車票的人數(shù)-短途車票每張的價格×購短途車票的人數(shù)=158,列出方程,求出購長途車票的有多少人,再用50減去購長途車票的人數(shù),求出購短途車票的有多少人即可.
解答 解:設購長途車票有x人,則購短途車票的有50-x人,
8x-3(50-x)=158
11x-150=158
11x-150+150=158+150
11x=308
11x÷11=308÷11
x=28
50-28=22(人)
答:購長途車票有28人,購短途車票的有22人.
點評 此題主要考查了一元一次方程的應用,弄清題意,找出合適的等量關系,進而列出方程是解答此類問題的關鍵.
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
$\frac{1}{5}$+$\frac{2}{5}$= | $\frac{5}{9}$-$\frac{3}{9}$= | $\frac{1}{2}$+$\frac{1}{2}$= | $\frac{1}{6}$+$\frac{1}{6}$= | $\frac{2}{3}$-$\frac{1}{3}$= |
$\frac{2}{7}$+$\frac{5}{7}$= | $\frac{5}{8}$-$\frac{1}{8}$= | 1-$\frac{2}{3}$= | $\frac{3}{5}$-$\frac{3}{5}$= | $\frac{6}{9}$-$\frac{3}{9}$= |
$\frac{1}{4}$+$\frac{3}{4}$= | $\frac{2}{7}$+$\frac{3}{7}$= | $\frac{4}{6}$-$\frac{3}{6}$= | 1-$\frac{1}{2}$= | $\frac{2}{8}$+$\frac{5}{8}$= |
$\frac{2}{7}$+$\frac{()}{7}$=$\frac{3}{7}$ | $\frac{()}{9}$-$\frac{5}{9}$=$\frac{2}{9}$ | $\frac{()}{4}$-$\frac{2}{4}$=$\frac{2}{4}$ | $\frac{()}{5}$+$\frac{2}{5}$=1 | $\frac{()}{8}$+$\frac{()}{8}$=$\frac{7}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com