如圖,用2條線段可以把一個邊長為10厘米的正方形分割成面積相等的4部分,這兩條分割線的長度總和是20厘米(如圖),現(xiàn)在請你用不超過4條的線段將一個邊長為10厘米的正方形分割成面積相等的5部分,要求找出3種不同的分割方法,其分割線的長度總和必須小于40厘米,在圖中畫分割線并在每個圖下面的橫線上寫上分割線的長度總和.

解:根據(jù)分析畫圖如下:

分析:首先一個一個邊長10厘米的正方形面積為100平方厘米,分成相等的五份,每份面積應為20平方厘米;
第一種方法:把它分為一個長為10厘米,寬為2厘米的長方形和四個長為5厘米,寬為4厘米的長方形;
第二種方法:把它分為一個長為10厘米,寬為2厘米的長方形和四個底邊為5厘米,高為8厘米直角三角形;
第三種方法:把它分成中間一個正方形和四個角上四個直角三角形,如下圖所示.
點評:本題先把每一個正方形的兩條對邊都5等分是解答的關鍵確定分割線長度總和最短是難點.
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:

想一想,填一填.
(1)如圖1,把線段的一端無限延長就得到一條
射線
射線
,記作
射線OA
射線OA

(2)如圖2,一條線段,將它的兩個端點
無限
無限
地延長就得到一條直線.直線也可以用小寫字母表示,本圖中的直線記作
直線a
直線a

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

如圖1是一個多邊形,可以用尺量出這個多邊形每一條邊的長度,請你想一想需要量幾條邊的長度,就可以求出這個圖形的周長.
分析:為了分析方便,我們把每一條線段都編上序號,如圖2.

方法一:把圖中10條線段長度都測量出來,相加,就得到這個圖形的周長.
方法二:仔細觀察上面的圖形,在水平方向,線段①、③、⑨、⑦的和與線段⑤等長;在豎直方向,線段⑩、⑧、⑥的和與線段②、④的和相等.因此,我們只要測量出線段②、④、⑤的長度就可以求出整個圖形的周長.根據(jù)以上分析,請計算圖3圖形的周長.(單位:厘米)

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

如圖,用2條線段可以把一個邊長為10厘米的正方形分割成面積相等的4部分,這兩條分割線的長度總和是20厘米(如圖),現(xiàn)在請你用不超過4條的線段將一個邊長為10厘米的正方形分割成面積相等的5部分,要求找出3種不同的分割方法,其分割線的長度總和必須小于40厘米,在圖中畫分割線并在每個圖下面的橫線上寫上分割線的長度總和.

查看答案和解析>>

科目:小學數(shù)學 來源:數(shù)學教研室 題型:072

  1.畫示意圖

  圖形具有直觀性,但在實際數(shù)學問題中的具體含義、具體條件以及數(shù)量關系往往比較隱蔽,比較復雜,那么畫示意圖是指將實際數(shù)學問題中隱藏復雜的內涵條件以及復雜的數(shù)量關系畫出示意圖,用幾何圖形直觀形象地表示出來,這樣不僅簡單明了,而且容易從整體上把握題目,便于思考和求解,俗話說:“一圖頂千言!

  2.在計數(shù)問題中常見的幾種示意圖

  (1)畫線段圖。即把文字的含義用線段表示出來,例如“組隊問題”“和差問題”和倍問題”“行程問題”等等,用線段圖解起來往往比文字的敘述更簡單明了得多。

  如:用12、3、4四個數(shù)中兩個數(shù)組成一個兩位數(shù),試求有幾種不同的組合方法?

 、儆A、B、C、D四點分別表示12、34,畫出線段圖:

  ②線段的條數(shù)與組合方案數(shù)之間的關系是________。

  (2)畫“樹圖”。什么樣的圖叫做“樹圖”呢?請看實例:

  從甲村到乙村有兩條路可走,從乙村到丙村有三條路可走(如圖(a)),那么從甲村到丙村有幾條路可走呢?

  根據(jù)題意可知,從甲村到乙村的每條道路都對應著從乙村到丙村的三條道路,于是我們可畫出如圖b的圖形,這圖形中明顯地告訴我們,從甲村到丙村有________條路可走。

  在數(shù)學上將類似上圖的這種沒有回路的圖形叫做“樹圖”,現(xiàn)實生活中最典型的“樹圖”是家譜。在數(shù)學學習中,畫“樹圖”是計數(shù)問題中最基本的思考方法。

  3.需要同學們注意的是,數(shù)學問題來自于生活實際,千變萬化、錯綜復雜、靈活性很強,在計數(shù)時,實際應用絕不能拘泥于這幾種示意圖。比如連線圖、階梯圖等等,要因題而定,只要畫出的示意圖能幫助思考,推理或簡化解答都可以。

查看答案和解析>>

同步練習冊答案