【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求四面體N-BCM的體積.
【答案】(Ⅰ)見解析;(Ⅱ)
【解析】
(1)取BC中點(diǎn)E,連結(jié)EN,EM。易得四邊形ABEM是平行四邊形,進(jìn)而平面NEM∥平面PAB,∴MN∥平面PAB.(2)設(shè)AC中點(diǎn)F,則VN-BCM=。求出S△BCM面積,算S△BCM面積時(shí)高時(shí)構(gòu)造一個(gè)等高的△MEG ,NF=PA=2,帶入即可。
(Ⅰ)取BC中點(diǎn)E,連結(jié)EN,EM,∵N為PC的中點(diǎn),∴NE是△PBC的中位線
∴NE∥PB,又∵AD∥BC,∴BE∥AD,
∵AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,
∴BE=BC=AM=2,∴四邊形ABEM是平行四邊形,
∴EM∥AB,∴平面NEM∥平面PAB,∵M(jìn)N平面NEM,∴MN∥平面PAB.
(Ⅱ)取AC中點(diǎn)F,連結(jié)NF,∵NF是△PAC的中位線,∴NF∥PA,NF=PA=2,
又∵PA⊥面ABCD,∴NF⊥面ABCD,如圖,延長BC至G,使得CG=AM,連結(jié)GM,
∵AMCG,∴四邊形AGCM是平行四邊形,∴AC=MG=3,
又∵M(jìn)E=3,EC=CG=2,∴△MEG的高h(yuǎn)=,
∴S△BCM=×BC×h=×4×=2,
∴四面體N-BCM的體積VN-BCM=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設(shè)表示得分在區(qū)間中參加全市座談交流的人數(shù),求的分布列及數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱 中,D為A1B1的中點(diǎn),AB=BC=2,,,則異面直線BD與AC所成的角為( )
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 過點(diǎn),離心率為.
(1)求橢圓的方程;
(2), 是過點(diǎn)且互相垂直的兩條直線,其中交圓于, 兩點(diǎn), 交橢圓于另一個(gè)點(diǎn),求面積取得最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為.
(1)求與交點(diǎn)的直角坐標(biāo);
(2)過原點(diǎn)作直線,使與, 分別相交于點(diǎn), (, 與點(diǎn)均不重合),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進(jìn)一定數(shù)量的空調(diào)器,商場每銷售一臺(tái)空調(diào)器可獲利500元,若供大于求,則每臺(tái)多余的空調(diào)器需交保管費(fèi)100元;若供不應(yīng)求,則可從其他商店調(diào)劑供應(yīng),此時(shí)每臺(tái)空調(diào)器僅獲利潤200元。
(Ⅰ)若該商場周初購進(jìn)20臺(tái)空調(diào)器,求當(dāng)周的利潤(單位:元)關(guān)于當(dāng)周需求量n(單位:臺(tái),)的函數(shù)解析式;
(Ⅱ)該商場記錄了去年夏天(共10周)空調(diào)器需求量n(單位:臺(tái)),整理得下表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進(jìn)20臺(tái)空調(diào)器,X表示當(dāng)周的利潤(單位:元),求X的分布列及數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)機(jī)床生產(chǎn)的零件各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
測試指標(biāo) | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
甲機(jī)床 | 8 | 12 | 40 | 32 | 8 |
乙機(jī)床 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機(jī)床生產(chǎn)1件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元,假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的利潤(單位:元);
(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任意抽取2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)2017年的純利潤為500萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力逐年下降,若不能進(jìn)行技術(shù)改造,預(yù)測從2018年起每年比上一年純利潤減少20萬元,2018年初該企業(yè)一次性投入資金600萬元進(jìn)行技術(shù)改造,預(yù)測在未扣除技術(shù)改造資金的情況下,第年(以2018年為第一年)的利潤為萬元(為正整數(shù)).
(1)設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤為萬元,進(jìn)行技術(shù)改造后的累計(jì)純利潤為萬元(須扣除技術(shù)改造資金),求,的表達(dá)式;
(2)依上述預(yù)測,從2018年起該企業(yè)至少經(jīng)過多少年,進(jìn)行技術(shù)改造后的累計(jì)利潤超過不進(jìn)行技術(shù)改造的累計(jì)純利潤?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com