【題目】一位運動員推鉛球,鉛球運行時離地面的高度(米)是關(guān)于運行時間(秒)的二次函數(shù).已知鉛球剛出手時離地面的高度為米;鉛球出手后,經(jīng)過4秒到達離地面3米的高度,經(jīng)過10秒落到地面.如圖建立平面直角坐標(biāo)系.
(Ⅰ)為了求這個二次函數(shù)的解析式,需要該二次函數(shù)圖象上三個點的坐標(biāo).根據(jù)題意可知,該二次函數(shù)圖象上三個點的坐標(biāo)分別是____________________________;
(Ⅱ)求這個二次函數(shù)的解析式和自變量的取值范圍.
【答案】(0, ),(4,3)
【解析】試題分析:(Ⅰ)根據(jù)“剛出手時離地面高度為米、經(jīng)過4秒到達離地面3米的高度和經(jīng)過10秒落到地面”可得三點坐標(biāo);
(Ⅱ)利用待定系數(shù)法求解可得.
試題解析:解:(Ⅰ)由題意知,該二次函數(shù)圖象上的三個點的坐標(biāo)分別是(0, )、(4,3)、(10,0).故答案為:(0, )、(4,3)、(10,0).
(Ⅱ)設(shè)這個二次函數(shù)的解析式為y=ax2+bx+c,將(Ⅰ)三點坐標(biāo)代入,得: ,解得: ,所以所求拋物線解析式為y=﹣x2+x+,因為鉛球從運動員拋出到落地所經(jīng)過的時間為10秒,所以自變量的取值范圍為0≤x≤10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷
A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星光廚具店購進電飯煲和電壓鍋兩種電器進行銷售其進價與售價如表
進價(元/臺) | 售價(元/臺) | |
電飯煲 | 200 | 250 |
電壓鍋 | 160 | 200 |
(1)一季度,廚具店購進這兩種電器共30臺,用去了5600元,并且全部售完,問廚具店在該買賣中賺了多少錢?
(2)為了滿足市場需求,二季度廚具店決定采購電飯煲和電壓鍋共50臺,且電飯煲的數(shù)量不大于電壓鍋的,請你通過計算判斷,如何進貨廚具店賺錢最多?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,點B關(guān)于AD的對稱點為B′,連接AB′,CB′,CB′交AD于F點.
(1)如圖1,∠ABC=90°,求證:F為CB′的中點;
(2)小宇通過觀察、實驗、提出猜想:如圖2,在點B繞點A旋轉(zhuǎn)的過程中,點F始終為CB′的中點.小宇把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:過點B′作B′G∥CD交AD于G點,只需證三角形全等;
想法2:連接BB′交AD于H點,只需證H為BB′的中點;
想法3:連接BB′,BF,只需證∠B′BC=90°.
…
請你參考上面的想法,證明F為CB′的中點.(一種方法即可)
(3)如圖3,當(dāng)∠ABC=135°時,AB′,CD的延長線相交于點E,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按如圖所示的程序計算.若開始輸入的的值為18,我們發(fā)現(xiàn)第1次得到的結(jié)果為9,第2次得到的結(jié)果為14,第3次得到的結(jié)果為7.……,請你探索第2019次得到的結(jié)果為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快遞員小王下午騎摩托車從總部出發(fā),在一條東西走向的街道上來回收送包裹.他行駛的情況記錄如下(向東記為“”,向西記為“”,單位:千米):
,,,,,,
(1)小王最后是否回到了總部?
(2)小王離總部最遠是多少米?在總部的什么方向?
(3)如果小王每走米耗油毫升,那么小王下午騎摩托車一共耗油多少毫升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,如果對角線AC和BD相交并且相等,那么我們把這樣的四邊形稱為等角線四邊形.
(1)在“平行四邊形、矩形、菱形,正方形”中, 一定是等角線四邊形(填寫圖形名稱);
(2)若M、N、P、Q分別是等角線四邊形ABCD四邊AB、BC、CD、DA的中點,當(dāng)對角線AC、BD還要滿足 時,四邊形MNPQ是正方形;
(3)如圖2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D為平面內(nèi)一點.若四邊形ABCD是等角線四邊形,且AD=BD,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E為CD的中點,點F在BC上,且CF=2BF,連接AE,AF,若AF=,AE=7,tan∠EAF=,則線段BF的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別是A(-3,2),B(-1,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;
(2)平移△ABC,若A的對應(yīng)點A2的坐標(biāo)為(-5,-2),畫出平移后的△A2B2C2;
(3)若將△A2B2C2繞某一點旋轉(zhuǎn)可以得到△A1B1C,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com