【題目】工人師傅童威準備在一塊長為60,寬為48的長方形花圃內(nèi)修建四條寬度相等,且與各邊垂直的小路.四條小路圍成的中間部分恰好是一個正方形,且邊長是小路寬度的8倍.若四條小路所占面積為160.設小路的寬度為x,依題意列方程,化為一般形式為_________
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,、、分別是菱形ABCD的兩條對角線長和邊長,這時我們把關于的形如“”的一元二次方程稱為“菱系一元二次方程”.請解決下列問題:
(1)填空:①當,時, .
②用含,的代數(shù)式表示值, .
(2)求證:關于的“菱系一元二次方程”必有實數(shù)根;
(3)若是“菱系一元二次方程”的一個根,且菱形的面積是25,BE是菱形ABCD的AD邊上的高,求BE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,不等邊△ABC內(nèi)接于,I是其內(nèi)心,AI⊥OI,AB=2,BC=3,則AC的長為( )
A. 4B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程(x-3)(x-2)-p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;
(2)設方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)已知∠MAN=135°,正方形ABCD繞點A旋轉.
(1)當正方形ABCD旋轉到∠MAN的外部(頂點A除外)時,AM,AN分別與正方形ABCD的邊CB,CD的延長線交于點M,N,連接MN.
①如圖1,若BM=DN,則線段MN與BM+DN之間的數(shù)量關系是 ;
②如圖2,若BM≠DN,請判斷①中的數(shù)量關系是否仍成立?若成立,請給予證明;若不成立,請說明理由;
(2)如圖3,當正方形ABCD旋轉到∠MAN的內(nèi)部(頂點A除外)時,AM,AN分別與直線BD交于點M,N,探究:以線段BM,MN,DN的長度為三邊長的三角形是何種三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2-4(k-1)x+4k2=0有兩個實數(shù)根x1、x2
(1) 求k的取值范圍
(2) 若x1x2-2|x1+x2|=4,求k的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:
(1)本次調(diào)查的學生有多少人?
(2)補全上面的條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是_____;
(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E在邊AB上,點F在邊CD上,如果添加一個條件,使△ADE≌△CBF,那么添加的條件不能為( 。
A.DE=BFB.AE=CFC.BE=DFD.∠ADE=∠CBF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com