已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線(xiàn)為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將Rt△OAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.
(1)求經(jīng)過(guò)點(diǎn)O,C,A三點(diǎn)的拋物線(xiàn)的解析式.
(2)求拋物線(xiàn)的對(duì)稱(chēng)軸與線(xiàn)段OB交點(diǎn)D的坐標(biāo).
(3)線(xiàn)段OB與拋物線(xiàn)交與點(diǎn)E,點(diǎn)P為線(xiàn)段OE上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,點(diǎn)E重合),過(guò)P點(diǎn)作y軸的平行線(xiàn),交拋物線(xiàn)于點(diǎn)M,問(wèn):在線(xiàn)段OE上是否存在這樣的點(diǎn)P,使得PD=CM?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)
(2)(,1)
(3)存在。理由見(jiàn)解析
【解析】
分析:(1)在Rt△AOB中,根據(jù)AO的長(zhǎng)和∠BOA的度數(shù),可求得OB的長(zhǎng),根據(jù)折疊的性質(zhì)即可得到OA=OC,且∠BOC=∠BOA=30°,過(guò)C作CD⊥x軸于D,即可根據(jù)∠COD的度數(shù)和OC的長(zhǎng)求得CD、OD的值,從而求出點(diǎn)C、A的坐標(biāo),將A、C、O的坐標(biāo)代入拋物線(xiàn)的解析式中,通過(guò)聯(lián)立方程組即可求出待定系數(shù)的值,從而確定該拋物線(xiàn)的解析式。
(2)求出直線(xiàn)BO的解析式,進(jìn)而利用x=求出y的值,即可得出D點(diǎn)坐標(biāo)。
(3)根據(jù)(1)所得拋物線(xiàn)的解析式可得到其頂點(diǎn)的坐標(biāo)(即C點(diǎn)),設(shè)直線(xiàn)MP與x軸的交點(diǎn)為N,且PN=t,在Rt△OPN中,根據(jù)∠PON的度數(shù),易得PN、ON的長(zhǎng),即可得到點(diǎn)P的坐標(biāo),然后根據(jù)點(diǎn)P的橫坐標(biāo)和拋物線(xiàn)的解析式可求得M點(diǎn)的縱坐標(biāo),過(guò)M作MF⊥CD(即拋物線(xiàn)對(duì)稱(chēng)軸)于F,過(guò)P作PQ⊥CD于Q,若PD=CM,那么CF=QD,根據(jù)C、M、P、D四點(diǎn)縱坐標(biāo),易求得CF、QD的長(zhǎng),聯(lián)立兩式即可求出此時(shí)t的值,從而求得點(diǎn)P的坐標(biāo)。
解:(1)過(guò)點(diǎn)C作CH⊥x軸,垂足為H,
∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,
∴,AB=2。
由折疊的性質(zhì)知:∠COB=30°,OC=AO=,
∴∠COH=60°,OH=,CH=3。
∴C點(diǎn)坐標(biāo)為(,3)。
∵O點(diǎn)坐標(biāo)為:(0,0),∴拋物線(xiàn)解析式為(a≠0)。
∵圖象經(jīng)過(guò)C(,3)、A(,0)兩點(diǎn),
∴,解得。
∴此拋物線(xiàn)的函數(shù)關(guān)系式為:。
(2)∵AO=,AB=2,∴B點(diǎn)坐標(biāo)為(,2)。
∴設(shè)直線(xiàn)BO的解析式為:y=kx,則2=k,解得:k=。
∴設(shè)直線(xiàn)BO的解析式為:y=x。
∵的對(duì)稱(chēng)軸為直線(xiàn),
∴將兩函數(shù)聯(lián)立得出:y=。
∴拋物線(xiàn)的對(duì)稱(chēng)軸與線(xiàn)段OB交點(diǎn)D的坐標(biāo)為:(,1)。
(3)存在。
∵的頂點(diǎn)坐標(biāo)為(,3),即為點(diǎn)C,
MP⊥x軸,垂足為N,設(shè)PN=t;
∵∠BOA=30°,∴ON=t!郟(t,t)。
作PQ⊥CD,垂足為Q,MF⊥CD,垂足為F,
把x=t代入,得,
∴M(t,﹣),F(xiàn)(,)。
同理:Q(,t),D(,1)。
要使PD=CM,只需CF=QD,即,解得t=,t=1(舍去)。
∴P點(diǎn)坐標(biāo)為。
∴存在滿(mǎn)足條件的P點(diǎn),使得PD=CM,此時(shí)P點(diǎn)坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
b |
2a |
4ac-b2 |
4a |
b |
2a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:第34章《二次函數(shù)》?碱}集(23):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com