【題目】如圖:△ABC中,AM平分∠BAC,且AM⊥BM于點M,已知AB=8,AC=20,M1、M2…Mn﹣1把線段BM分成n等份(其中n為正整數(shù)),C1、C2…C2n﹣1把線段BC分成2n等份,則M99C99=_____.
【答案】
【解析】
延長BM交AC于H.首先證明BM=MH,AB=AH=8,計算出BM=BH,HC=12,然后由M99C99∥AC利用平行線分線段成比例定理解決問題即可.
解:延長BM交AC于H.
∵AM⊥BM,
∴∠AMB=∠AMH=90°,
∴∠BAM+∠ABM=90°,∠HAM+∠AHM=90°,
∵∠BAM=∠HAM,
∴∠ABM=∠AHM,
∴AB=AH=8,
∴BM=BH,HC=AC﹣AH=20﹣8=12,
∵M1、M2…Mn﹣1把線段BM分成n等份(其中n為正整數(shù)),C1、C2…C2n﹣1把線段BC分成2n等份,
∴M99C99∥AC,
∴=,
∴M99C99=12×=,
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊沿射線向右平移到的位置,連接,則下列結(jié)論:①;②互相平分;③四邊形是菱形;④。其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩相似三角形對應(yīng)高的比為,且大三角形的面積為,求小三角形的面積,又這兩三角形的周長差為,則它們的周長分別為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求與之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品現(xiàn)在的售價為每件60元,每星期可賣出300件,市場調(diào)查反映:如調(diào)整價格,每漲價1元,每星期要少賣出10件;每降價1元,每星期可多賣出20件,已知商品的進價為每件40元
(1)設(shè)每件漲價x元,則每星期實際可賣出 件,每星期售出商品的利潤y為 元.x的取值范圍是 ;
(2)設(shè)每件降價m元,則每星期售出商品的利潤w為 元;
(3)在漲價的情況下,如何定價才能使每星期售出商品的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用合適的方法解方程:
(1)(2t+3)2=3(2t+3)
(2)(2x﹣1)2=9(x﹣2)2
(3)2x2=5x﹣1
(4)x2+4x﹣5=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,點A0位于坐標原點,點A1,A2,A3,…,A2008在y軸的正半軸上,點B1,B2,B3,…,B2008在二次函數(shù)位于第一象限的圖象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都為等邊三角形,則△A2007B2008A2008的邊長=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三張分別標有數(shù)字2,5,9的卡片,它們的背面都相同.現(xiàn)將它們背面朝上,從中任意抽出一張卡片,不放回,再從剩余的兩張卡片里任意抽出一張.
(1)請用樹狀圖或列表法表示出所有可能的結(jié)果.
(2)求兩張卡片的數(shù)字之和為偶數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com