已知點(diǎn)M與點(diǎn)N關(guān)于軸對(duì)稱,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線l1經(jīng)過點(diǎn)(3,5)與(-4,-9),直線l3∥l1,且過直線l2與y軸精英家教網(wǎng)的交點(diǎn)B,交x軸于點(diǎn)A,已知直線l2:y=-x+6.
(1)畫出直線l3的位置,求出直線l1、l3的解析式和點(diǎn)A的坐標(biāo).
(2)若點(diǎn)P(x,y)是線段AB上的一動(dòng)點(diǎn),△OPA的面積為S,求:
①S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②請(qǐng)求出S的最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)圖象經(jīng)過點(diǎn)(-2,5)并且與y軸相交于點(diǎn)P,直線y=-
12
x+3與y軸相交于點(diǎn)Q,點(diǎn)Q恰與點(diǎn)P關(guān)于x軸對(duì)稱,求這個(gè)一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•縉云縣模擬)已知在平面直角坐標(biāo)系中,直線y=-
3
x+6
3
與x軸,y軸相交于A,B兩點(diǎn),直線y=
3
x
與AB相交于C點(diǎn),點(diǎn)D從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿x軸向右運(yùn)動(dòng)到點(diǎn)A,過點(diǎn)D作x軸的垂線,分別交直線y=
3
x
和直線y=-
3
x+6
3
于P,Q兩點(diǎn)(P點(diǎn)不與C點(diǎn)重合),以PQ為邊向左作正△PQR,設(shè)正△PQR與△OBC重疊部分的面積為S(平方單位),點(diǎn)D的運(yùn)動(dòng)時(shí)間為t(秒)
(1)求點(diǎn)A,B,C的坐標(biāo); 
(2)若點(diǎn)M(2,3
3
)正好在△PQR的某邊上,求t的值;
(3)求S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍,求出D在整個(gè)運(yùn)動(dòng)過程中s的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究與應(yīng)用:在學(xué)習(xí)幾何時(shí),我們可以通過分離和構(gòu)造基本圖形,將幾何“模塊”化.例如在相似三角形中,K字形是非常重要的基本圖形,可以建立如下的“模塊”(如圖①):
(1)請(qǐng)就圖①證明上述“模塊”的合理性.已知:∠A=∠D=∠BCE=90°,求證:△ABC∽△DCE;
(2)請(qǐng)直接利用上述“模塊”的結(jié)論解決下面兩個(gè)問題:
①如圖②,已知點(diǎn)A(-2,1),點(diǎn)B在直線y=-2x+3上運(yùn)動(dòng),若∠AOB=90°,求此時(shí)點(diǎn)B的坐標(biāo);
②如圖③,過點(diǎn)A(-2,1)作x軸與y軸的平行線,交直線y=-2x+3于點(diǎn)C、D,求點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M、N的坐標(biāo)分別為(0,1)、(0,-1),點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作平行于軸的直線。

(1)求證:以點(diǎn)P為圓心,PM為半徑的圓與直線相切;

(2)設(shè)直線PM,NP與拋物線的另一個(gè)交點(diǎn)分別為點(diǎn)Q,R,求證:Q,R兩點(diǎn)關(guān)于軸對(duì)稱.

查看答案和解析>>

同步練習(xí)冊(cè)答案