【題目】小李在景區(qū)銷售一種旅游紀念品,已知每件進價為6元,當(dāng)銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設(shè)該紀念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).

1)求yx的函數(shù)關(guān)系式.

2)要使日銷售利潤為720元,銷售單價應(yīng)定為多少元?

3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時,日銷售利潤最大,并求出最大利潤.

【答案】1;(210元;(3x12時,日銷售利潤最大,最大利潤960

【解析】

1)根據(jù)題意得到函數(shù)解析式;

2)根據(jù)題意列方程,解方程即可得到結(jié)論;

3)根據(jù)題意得到,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

解:(1)根據(jù)題意得,,

yx的函數(shù)關(guān)系式為;

2)根據(jù)題意得,,解得:,(不合題意舍去),

答:要使日銷售利潤為720元,銷售單價應(yīng)定為10元;

3)根據(jù)題意得,,

當(dāng)時,wx的增大而增大,

當(dāng)時,,

答:當(dāng)x12時,日銷售利潤最大,最大利潤960元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】參照學(xué)習(xí)函數(shù)的過程方法,探究函數(shù)的圖像與性質(zhì),因為,即,所以我們對比函數(shù)來探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

<>

2

3

5

-3

-2

0

描點:在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點如圖所示:

1)請把軸左邊各點和右邊各點分別用一條光滑曲線,順次連接起來;

2)觀察圖象并分析表格,回答下列問題:

①當(dāng)時,的增大而______;(“增大”或“減小”)

的圖象是由的圖象向______平移______個單位而得到的;

③圖象關(guān)于點______中心對稱.(填點的坐標(biāo))

3)函數(shù)與直線交于點,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.

請根據(jù)圖中信息,解決下列問題:

1)兩個班共有女生多少人?

2)將頻數(shù)分布直方圖補充完整;

3)求扇形統(tǒng)計圖中部分所對應(yīng)的扇形圓心角度數(shù);

4)身高在5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機抽取兩人補充到學(xué)校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)的圖象上.若點A的坐標(biāo)為(-2,-2),則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019個邊長為l的正方形按如圖所示的方式排列,點和點是正方形的頂點,連接分別交正方形的邊于點,四邊形的面積是,四邊形的面積是,則_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在藝術(shù)節(jié)期間向全校學(xué)生征集書畫作品,美術(shù)王老師從全校隨機抽取了四個班級記作AB、C、D,對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.

1)王老師抽查的四個班級共征集到作品多少件?

2)請把圖2的條形統(tǒng)計圖補充完整;

3)若全校參展作品中有五名同學(xué)獲得一等獎,其中有三名男生、二名女生.現(xiàn)在要在其中抽兩名同學(xué)去參加學(xué)?偨Y(jié)表彰座談會,請用畫樹狀圖或列表的方法求恰好抽中一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點OAEBCCB延長線于E,CFAEAD延長線于點F

1)求證:四邊形AECF為矩形;

2)連接OE,若AE=4AD=5,求tanOEC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某林業(yè)部門統(tǒng)計某種樹苗在本地區(qū)一定條件下的移植成活率,結(jié)果如表:

移植的棵數(shù)

300

700

1000

5000

15000

成活的棵數(shù)

280

622

912

4475

13545

成活的頻率

0.933

0.889

0.912

0.895

0.903

根據(jù)表中的數(shù)據(jù),估計這種樹苗移植成活的概率為_____(精確到0.1);如果該地區(qū)計劃成活4.5萬棵幼樹,那么需要移植這種幼樹大約_____萬棵.

查看答案和解析>>

同步練習(xí)冊答案