【題目】如圖,將兩塊直角三角尺的頂點疊放在一起.

1)若∠DCE25°,求∠ACB的度數(shù).

2)若∠ACB140°,求∠DCE的度數(shù).

3)猜想∠ACB與∠DCE的關(guān)系,并說明理由.

【答案】(1)155°;(240°;(3)∠ACB與∠DCE互補.理由見解析.

【解析】

1)由于是兩直角三角形板重疊,重疊的部分就比90°+90°減少的部分,所以若∠DCE=25°,則∠ACB的度數(shù)為180°-25°=155°;
2)與(1)同理,由∠ACB=140°,則∠DCE的度數(shù)為180°-ACB=40°;
3)由于∠ACD=ECB=90°,重疊的度數(shù)就是∠ECD的度數(shù),所以∠ACB+DCE=180°

1)∵∠ACD=∠ECB90°,∠DCE25°,

∴∠ACB=∠ACD+DCB

=∠ACD+ECB﹣∠DCE

180°25°

155°;

2)由(1)知∠ACB180°﹣∠ECD

∴∠ECD180°﹣∠ACB40°;

3)∠ACB+DCE180°

理由:∵∠ACB=∠ACD+DCB90°+90°﹣∠DCE

∴∠ACB+DCE180°,即∠ACB與∠DCE互補.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙OABC外接圓,直徑AB=12,A=2B.

(1)A=   °,B=   °;

(2)求BC的長(結(jié)果用根號表示);

(3)連接OC并延長到點P,使CP=OC,連接PA,畫出圖形,求證:PA是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商販在批發(fā)市場以每包元的價格購進甲種茶葉40包,以每包元的價格購進乙種茶葉60.

1)該商販購進甲、乙兩種茶葉共需資金______元(用含,的式子表示);

2)若該商販將兩種茶葉都提價全部售出,共可獲利多少元(用含的式子表示)?

3)若該商販將兩種茶葉都以每包元的價格全部出售,在這次買賣中該商販是盈利還是虧損,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,把AB邊上的點D順時針旋轉(zhuǎn)得到AB于點E,若,則的面積是

A. 3 B. 5 C. 11 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調(diào)查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.

請根據(jù)以上信息解答下列問題:

課外體育鍛煉情況扇形統(tǒng)計圖中,經(jīng)常參加所對應(yīng)的圓心角的度數(shù)為______;

請補全條形統(tǒng)計圖;

該校共有1200名男生,請估計全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);

小明認為全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為,請你判斷這種說法是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的中線,AEBC,BEAD于點F,且AF=DF.

(1)求證:AFEODFB;

(2)求證:四邊形ADCE是平行四邊形;

(3)ABAC之間滿足什么條件時,四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為邊長為6的正方形ABCD的邊BC上一動點(P與B、C不重合),Q在CD上,且CQ=BP,連接AP、BQ,將△BQC沿BQ所在的直線翻折得到△BQE,延長QE交BA的延長線于點F.

(1)試探究AP與BQ的數(shù)量與位置關(guān)系,并證明你的結(jié)論;

(2)當E是FQ的中點時,求BP的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖:在△ABC中,AC=3,BC=6,C=60;

(1)將△ABC繞著點C旋轉(zhuǎn),使點A落在直線BC上的點A,B落在B′,在下圖中畫出旋轉(zhuǎn)后的△ABC.

(2)直接寫出AB的長,AB=___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位采購員同時去一家飼料公司買兩次飼料,兩次飼料的價格有變化,兩位采購員的購貨方式也不同,其中,甲每次購買1000千克,乙每次用去800元,而不管購買多少飼料,購買的飼料單價分別為m元/千克和n元/千克,

1)甲、乙所購飼料的平均單價各是多少?

2)誰的購貨方式更合算?

查看答案和解析>>

同步練習冊答案