【題目】在邊長(zhǎng)為a的正方形中挖去一個(gè)邊長(zhǎng)為b的小正方形(a>b)(如圖甲),把余下的部分拼成一個(gè)矩形(如圖乙),根據(jù)兩個(gè)圖形中陰影部分的面積相等,可以驗(yàn)證( )
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AB、CD交于點(diǎn)O,OE⊥AB于O,則下列不正確的是( )
A.∠AOC與∠BOD是對(duì)頂角
B.∠BOD和∠DOE互為余角
C.∠AOC和∠DOE互為余角
D.∠AOE和∠BOC是對(duì)頂角
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度沿A→D→A運(yùn)動(dòng),動(dòng)點(diǎn)G從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿A→B運(yùn)動(dòng),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之也停止運(yùn)動(dòng).過(guò)點(diǎn)G作FG⊥AB交AC于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).以FG為一直角邊向右作等腰直角三角形FGH,△FGH與正方形ABCD重疊部分的面積為S.
(1)當(dāng)t=1.5時(shí),S=________;當(dāng)t=3時(shí),S=________.
(2)設(shè)DE=y1,AG=y2,在如圖所示的網(wǎng)格坐標(biāo)系中,畫出y1與y2關(guān)于t的函數(shù)圖象.并求當(dāng)t為何值時(shí),四邊形DEGF是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A(-3,y1),B(2,y2)在拋物線y=x2-x上,則y1______y2.(填“>”,“<”或“=”之一)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐:
發(fā)現(xiàn)問(wèn)題:
如圖①,已知:△OAB中,OB=3,將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得△OA′B,連接BB′.
則BB′= .
問(wèn)題探究:
如圖②,已知△ABC是邊長(zhǎng)為4的等邊三角形,以BC為邊向外作等邊△BCD,P為△ABC內(nèi)一點(diǎn),將線段CP繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,P的對(duì)應(yīng)點(diǎn)為Q.
(1)求證:△DCQ≌△BCP
(2)求PA+PB+PC的最小值.
實(shí)際應(yīng)用:
如圖③,某貨運(yùn)場(chǎng)為一個(gè)矩形場(chǎng)地ABCD,其中AB=500米,AD=800米,頂點(diǎn)A、D為兩個(gè)出口,現(xiàn)在想在貨運(yùn)廣場(chǎng)內(nèi)建一個(gè)貨物堆放平臺(tái)P,在BC邊上(含B、C兩點(diǎn))開一個(gè)貨物入口M,并修建三條專用車道PA、PD、PM.若修建每米專用車道的費(fèi)用為10000元,當(dāng)M,P建在何處時(shí),修建專用車道的費(fèi)用最少?最少費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是小李騎自行車離家的距離s(km)與時(shí)間t(h)之間的關(guān)系.
(1)在這個(gè)變化過(guò)程中自變量是 , 因變量是 .
(2)小李何時(shí)到達(dá)離家最遠(yuǎn)的地方?此時(shí)離家多遠(yuǎn)?
(3)分別求出在1≤t≤2時(shí)和2≤t≤4時(shí)小李騎自行車的速度.
(4)請(qǐng)直接寫出小李何時(shí)與家相距20km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長(zhǎng);
(2)若△DCN的面積為2,求四邊形ABCM的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com