設(shè)a、b為不超過10的自然數(shù),那么,使方程ax=b的解大于
1
4
且小于
1
3
的a、b的組數(shù)是(  )
A.2B.3C.4D.1
∵a、b是自然數(shù),
∴由方程ax=b,得
x=
b
a
;
又∵
1
4
b
a
1
3
,a、b為不超過10的自然數(shù),
∴滿足條件的a、b的值分別是:
b=2
a=7
b=3
a=10

∴使方程ax=b的解大于
1
4
且小于
1
3
的a、b的組數(shù)是2組;
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、象山縣出租車按分段累加的方法收費(fèi):3公里以內(nèi)(含3公里)收5元;超過3公里且不超過10公里的部分每公里收2元;超過10公里的部分每公里收3元.每次坐車另加燃油附加費(fèi)1元,不足1公里以1公里計(jì)算.若小明從學(xué)校坐出租車到家用了38元的錢,設(shè)小明家到學(xué)校的距離為x公里,則x的取值范圍是
15<x≤16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃岡)某科技開發(fā)公司研制出一種新型的產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價(jià)定為3000元,在該產(chǎn)品的試銷期間,為了促銷,鼓勵(lì)商家購買該新型產(chǎn)品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時(shí),每件按3000元銷售;若一次購買該種產(chǎn)品超過10件時(shí),每多購買一件,所購買的全部產(chǎn)品的銷售單價(jià)均降低10元,但銷售單價(jià)均不低于2600元.
(1)商家一次購買這種產(chǎn)品多少件時(shí),銷售單價(jià)恰好為2600元?
(2)設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲得的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時(shí),會(huì)出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲得的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲得的利潤越大,公司應(yīng)將最低銷售單價(jià)調(diào)整為多少元?(其它銷售條件不變)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

商店試銷某種產(chǎn)品,每件的綜合成本為5元.若每件產(chǎn)品的售價(jià)不超過10元,每天可銷售400件,設(shè)每件產(chǎn)品的售價(jià)為x元.
(1)當(dāng)每件產(chǎn)品的售價(jià)不超過10元時(shí),求該商店每天銷售該產(chǎn)品的利潤為y(元)與x的函數(shù)關(guān)系式;
(2)經(jīng)市場調(diào)查發(fā)現(xiàn):若每件產(chǎn)品的售價(jià)超過10元,每提高1元,每天的銷售量就減少40件,該店把每件產(chǎn)品的售價(jià)提高到10元以上,每天的利潤能否達(dá)到2160元?若能,求出每件產(chǎn)品的售價(jià)應(yīng)定為多少元時(shí),既能保證純收入又能吸引顧客?若不能.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)a、b為不超過10的自然數(shù),那么,使方程ax=b的解大于
1
4
且小于
1
3
的a、b的組數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案