【題目】如圖,Rt△ABO的頂點O在坐標(biāo)原點,點B在x軸上,∠ABO=90°,∠AOB=30°,OB=2 ,反比例函數(shù)y= (x>0)的圖象經(jīng)過OA的中點C,交AB于點D.
(1)求反比例函數(shù)的關(guān)系式;
(2)連接CD,求四邊形CDBO的面積.

【答案】
(1)

解:∵∠ABO=90°,∠AOB=30°,OB=2 ,

∴AB= OB=2,

作CE⊥OB于E,

∵∠ABO=90°,

∴CE∥AB,

∴OC=AC,

∴OE=BE= OB= ,CE= AB=1,

∴C( ,1),

∵反比例函數(shù)y= (x>0)的圖象經(jīng)過OA的中點C,

∴1= ,

∴k=

∴反比例函數(shù)的關(guān)系式為y=


(2)

解:∵OB=2 ,

∴D的橫坐標(biāo)為2

代入y= 得,y= ,

∴D(2 , ),

∴BD=

∵AB=2,

∴AD=

∴SACD= ADBE= × × = ,

∴S四邊形CDBO=SAOB﹣SACD= OBAB﹣ = ×2 ×2﹣ =


【解析】(1)解直角三角形求得AB,作CE⊥OB于E,根據(jù)平行線分線段成比例定理和三角形中位線的性質(zhì)求得C的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得反比例函數(shù)的解析式;
   。2)求得D的坐標(biāo),進(jìn)而求得AD的長,得出△ACD的面積,然后根據(jù)S四邊形CDBO=SAOB﹣SACD即可求得. 本題考查待定系數(shù)法求反比例函數(shù)的解析式,解決本題的關(guān)鍵是明確反比例函數(shù)圖象上點的坐標(biāo)特征.
【考點精析】根據(jù)題目的已知條件,利用比例系數(shù)k的幾何意義的相關(guān)知識可以得到問題的答案,需要掌握幾何意義:表示反比例函數(shù)圖像上的點向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,易知P,請補(bǔ)充完整證明過程:

證明:過點P

已作

____________,

____________

變式:

如圖是直線EF上的兩點,猜想這四個角之間的關(guān)系,并直接寫出以下三種情況下這四個角之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△AOB的頂點O為坐標(biāo)原點,點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(0,1),點C為邊AB的中點,正方形OBDE的頂點E在x軸的正半軸上,連接CO,CD,CE.

(1)線段OC的長為
(2)求證:△CBD≌△COE;
(3)將正方形OBDE沿x軸正方向平移得到正方形O1B1D1E1 , 其中點O,B,D,E的對應(yīng)點分別為點O1 , B1 , D1 , E1 , 連接CD,CE,設(shè)點E的坐標(biāo)為(a,0),其中a≠2,△CD1E1的面積為S.
①當(dāng)1<a<2時,請直接寫出S與a之間的函數(shù)表達(dá)式;
②在平移過程中,當(dāng)S= 時,請直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的菱形ABCD中,DAB=60°,連接對角線AC,以AC為邊作第二個菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC1=60°;…,按此規(guī)律所作的第六個菱形的邊長為( )

A. 9 B. C. 27 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種水彩筆,在購買時,若同時額外購買筆芯,每個優(yōu)惠價為3元,使用期間,若備用筆芯不足時需另外購買,每個5元.現(xiàn)要對在購買水彩筆時應(yīng)同時購買幾個筆芯作出選擇,為此收集了這種水彩筆在使用期內(nèi)需要更換筆芯個數(shù)的30組數(shù)據(jù),整理繪制出下面的條形統(tǒng)計圖:
設(shè)x表示水彩筆在使用期內(nèi)需要更換的筆芯個數(shù),y表示每支水彩筆在購買筆芯上所需要的費用(單位:元),n表示購買水彩筆的同時購買的筆芯個數(shù).
(1)若n=9,求y與x的函數(shù)關(guān)系式;
(2)若要使這30支水彩筆“更換筆芯的個數(shù)不大于同時購買筆芯的個數(shù)”的頻率不小于0.5,確定n的最小值;
(3)假設(shè)這30支筆在購買時,每支筆同時購買9個筆芯,或每支筆同時購買10個筆芯,分別計算這30支筆在購買筆芯所需費用的平均數(shù),以費用最省作為選擇依據(jù),判斷購買一支水彩筆的同時應(yīng)購買9個還是10個筆芯.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售國外、國內(nèi)兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價和售價如表所示

國外品牌

國內(nèi)品牌

進(jìn)價(萬元/部)

0.44

0.2

售價(萬元/部)

0.5

0.25

該商場計劃購進(jìn)兩種手機(jī)若干部,共需14.8萬元,預(yù)計全部銷售后可獲毛利潤共2.7萬元.[毛利潤=(售價﹣進(jìn)價)×銷售量]

(1)該商場計劃購進(jìn)國外品牌、國內(nèi)品牌兩種手機(jī)各多少部?

(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少國外品牌手機(jī)的購進(jìn)數(shù)量,增加國內(nèi)品牌手機(jī)的購進(jìn)數(shù)量.已知國內(nèi)品牌手機(jī)增加的數(shù)量是國外品牌手機(jī)減少的數(shù)量的3倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過15.6萬元,該商場應(yīng)該怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司在某市五個區(qū)投放共享單車供市民使用,投放量的分布及投放后的使用情況統(tǒng)計如下.

(1)該公司在全市一共投放了 萬輛共享單車;

(2)在扇形統(tǒng)計圖中,B區(qū)所對應(yīng)扇形的圓心角為 °;

(3)該公司在全市投放的共享單車的使用量占投放量的85%,請計算C區(qū)共享單車的使用量并補(bǔ)全條形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2= (x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則 =

查看答案和解析>>

同步練習(xí)冊答案