【題目】已知:如圖,△ABC,△ADE均為等腰直角三角形,點DE,C在同直線上,連接BD

1)求證:△ADB≌△AEC;(2)求∠BDC的度數(shù).

【答案】1)見解析;(2)∠BDC=90°

【解析】

(1)通過已知條件求出AD=AE,∠DAB=∠EAC,AB=AC,通過SAS即可證明△ADB≌△AEC

(2)通過(1)中的全等,可得∠ADB=∠AEC,通過直角三角形∠ADE=∠AED=45°,∠BDC=∠AEC-∠ADE即可求得.

(1)∵△ABC,△ADE均為等腰直角三角形,

∴AD=AEAB=AC,∠DAE=∠BAC=90°

∵∠DAB=∠DAE-∠BAE=90°-∠BAE,∠EAC=∠BAC-∠BAE=90°-∠BAE

∴∠DAB=∠EAC,

△ADB△AEC中,

,

∴△ADB≌△AEC(SAS)

(2)(1)得:△ADB≌△AEC,∴∠ADB=∠AEC

∵△ADE均為等腰直角三角形,

∴∠ADE=∠AED=45°,

∴∠AEC=180°-∠ADE=180°-45°=135°,

∴∠AEC=∠ADB=135°

∴∠BDC=∠AEC-∠ADE=135°-45°=90°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公 司承接A、B兩貨物運輸業(yè)務(wù),已知5月份A貨物運費單價為50元/噸,B貨物運費單價為30元/噸,共收取運費9500元6月份由于油價上漲,運費單價上漲為:A貨物70元/噸,B貨物40元/噸;該物流公司6月承接的A貨物和B種數(shù)量5月份相同,6月份共收取運費13000元。

1該物流公司月運輸兩種貨物各多少噸?

2該物流公司預(yù)計7月份運輸這兩種貨物330噸,且A貨物的數(shù)量不大于B貨物的2倍,在運費單價與6月份相同的情況下,該物流公司7月份最多將收到多少運輸費?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程隊承接了60萬平方米的綠化工程,由于情況有變,……設(shè)原計劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省略的部分是(

A. 實際工作時每天的工作效率比原計劃提高了結(jié)果提前30天完成了這一任務(wù)

B. 實際工作時每天的工作效率比原計劃提高了,結(jié)果延誤30天完成了這一任務(wù)

C. 實際工作時每天的工作效率比原計劃降低了,結(jié)果延誤30天完成了這一任務(wù)

D. 實際工作時每天的工作效率比原計劃降低了,結(jié)果提前30天完成了這一任務(wù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,(1)正方形ABCD及等腰RtAEF有公共頂點A,EAF90°, 連接BE、DF.RtAEF繞點A旋轉(zhuǎn),在旋轉(zhuǎn)過程中,BE、DF具有怎樣的數(shù)量關(guān)系和位置關(guān)系?結(jié)合圖(1)給予證明;

(2)將(1)中的正方形ABCD變?yōu)榫匦?/span>ABCD,等腰RtAEF變?yōu)?/span>RtAEF,且ADkAB,AFkAE,其他條件不變.(1)中的結(jié)論是否發(fā)生變化?結(jié)合圖(2)說明理由;

(3)將(2)中的矩形ABCD變?yōu)槠叫兴倪呅?/span>ABCD,將RtAEF變?yōu)?/span>AEF,且∠BADEAF,其他條件不變.(2)中的結(jié)論是否發(fā)生變化?結(jié)合圖(3),如果不變,直接寫出結(jié)論;如果變化,直接用k表示出線段BE、DF的數(shù)量關(guān)系,用表示出直線BE、DF形成的銳角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生上網(wǎng)現(xiàn)象越來越受到社會的關(guān)注,小記者小慧隨機(jī)調(diào)查了某校若干學(xué)生和家長對上網(wǎng)現(xiàn)象的看法制作了如下的統(tǒng)計圖12.請根據(jù)相關(guān)信息,解答或補(bǔ)全下列問題.

1)補(bǔ)全圖1;

2)求圖2中表示家長“贊成”的圓心角的度數(shù);

3)該校共有1600名學(xué)生,請你估計這所中學(xué)的所有學(xué)生中,對上網(wǎng)持“反對”態(tài)度的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的弦,D為半徑OA的中點,過DCD⊥OA交弦AB于點E,交⊙O于點F,且BC⊙O的切線.

(1)求證:CE=CB;

(2)連接AF,BF,求∠ABF的正弦值;

(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線經(jīng)過點,與y軸交于點B,與拋物線的對稱軸交于點

1)求m的值;

2)求拋物線的頂點坐標(biāo);

3是線段AB上一動點,過點N作垂直于y軸的直線與拋物線交于點,(點P在點Q的左側(cè)).若恒成立,結(jié)合函數(shù)的圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AD為直徑的半圓O經(jīng)過RtABC斜邊AB的兩個端點,交直角邊AC于點E,B,E是半圓弧的三等分點,弧AB的長為,則圖中陰影部分的面積為(  )

A. 6 B. 9 C. D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3張不透明的卡片,除正面寫有不同的數(shù)字外,其它均相同.將這三張卡片背面朝上洗勻后,第一次從中隨機(jī)抽取一張,并把這張卡片標(biāo)有的數(shù)字記作二次函數(shù)表達(dá)式yax22+c中的a,第二次從余下的兩張卡片中再隨機(jī)抽取一張,上面標(biāo)有的數(shù)字記作表達(dá)式中的c

1)求抽出a使拋物線開口向上的概率;

2)求拋物線yax22+c的頂點在第四象限的概率.(用樹狀圖或列表法求解)

查看答案和解析>>

同步練習(xí)冊答案