【題目】如圖所示,在平行四邊形中,,平分交線段

1)如果,求證:

2)一般的情況下,如果,試探究線段之間的所滿足的等量關(guān)系(其中,是已知數(shù))

【答案】1)證明見解析;(2nCD=mAF+nBE

【解析】

1)延長(zhǎng)EAG,使得 ,連接DG,根據(jù)四邊形ABCD是平行四邊形,推出,求出 ,根據(jù)SAA證明 ,推出 ,求出 ,推出 即可;

2)延長(zhǎng)EAG,使得 ,連接DG,根據(jù)兩邊對(duì)應(yīng)成比例,且夾角相等,兩三角形相似,推出 ,推出 ,代入即可求出答案.

(1)過DDHBC的延長(zhǎng)線于H點(diǎn),并截取HG=AF,連接DG

∵四邊形ABCD是平行四邊形

于點(diǎn)E

在△ABE和△DGA

∵四邊形ABCD是平行四邊形

(2)nCD = mAF + nBE.

理由是:延長(zhǎng)EAG,使得,連接DG

因?yàn)樗倪呅?/span>ABCD是平行四邊形

所以AB=CD,,AD=BC,

因?yàn)?/span>于點(diǎn)E

所以∠AEB=AEC=90°

所以∠AEB=DAG=90°

所以∠DAG=90°

即∠AEB=GAD=90°

因?yàn)?/span>

所以

所以∠1=2,

所以∠GFD=90°-3

因?yàn)?/span>DF平分∠ADC

所以∠3=4

所以∠GDF=2+3=1+4=180°-FAD-3=90°-3

所以∠GDF=GFD

所以DG=GF

因?yàn)?/span>,AB=CD(已證)

所以nCD=mDG=m

nCD= mAF + nBE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線表示一艘輪船的航行路線,從的走向?yàn)槟掀珫|30°,在的南偏東60°方向上有一點(diǎn),處到處的距離為200海里

1)求點(diǎn)到航線的距離

2)在航線上有一點(diǎn).,若輪船沿的速度為50海里/時(shí),求輪船從處到處所用時(shí)間為多少小時(shí)(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點(diǎn)P與點(diǎn)C重合,點(diǎn)Q、EF分別在BC、ABAC上(點(diǎn)E與點(diǎn)A、點(diǎn)B均不重合).

(1)當(dāng)AE=8時(shí),求EF的長(zhǎng);

(2)設(shè)AEx,矩形EFPQ的面積為y

yx的函數(shù)關(guān)系式;

當(dāng)x為何值時(shí),y有最大值,最大值是多少?

(3)當(dāng)矩形EFPQ的面積最大時(shí),將矩形EFPQ以每秒1個(gè)單位的速度沿射線CB勻速向右運(yùn)動(dòng)(當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10/斤的某種水果,經(jīng)過兩次降價(jià)后的價(jià)格為8.1/斤,并且兩次降價(jià)的百分率相同.

1)求該種水果每次降價(jià)的百分率;

2)從第一次降價(jià)的第1天算起,第x天(x為整數(shù))的售價(jià)、銷量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示:

時(shí)間x(天)

1≤x≤7

8≤x≤14

售價(jià)(元/斤)

1次降價(jià)后的價(jià)格

2次降價(jià)后的價(jià)格

銷量(斤)

803x

120x

儲(chǔ)存和損耗費(fèi)用(元)

40+3x

3x264x+400

已知該種水果的進(jìn)價(jià)為4.1/斤,設(shè)銷售該水果第x(天)的利潤(rùn)為y(元),求yx1≤x≤14)之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷售利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知的直徑,弦,的平分線交于點(diǎn),過點(diǎn)的延長(zhǎng)線于點(diǎn)

1)求證:的切線;

2)求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4n),B2,﹣4)是一次函數(shù)ykx+b的圖象和反比例函數(shù)y的圖象的兩個(gè)交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線ABx軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;

3)直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位組織職工開展植樹活動(dòng),植樹量與人數(shù)之間的關(guān)系如表,下列說法不正確的是(

A.參加本次植樹活動(dòng)共有29

B.每人植樹量的眾數(shù)是4

C.每人植樹量的中位數(shù)是5

D.每人植樹量的平均數(shù)是5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=8ECD邊的中點(diǎn),點(diǎn)P、QBC邊上兩個(gè)動(dòng)點(diǎn),且PQ=2,當(dāng)BP=_____時(shí),四邊形APQE的周長(zhǎng)最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)是圓上不與點(diǎn)重合的動(dòng)點(diǎn),連接并延長(zhǎng)到點(diǎn),使,點(diǎn)的中點(diǎn),連接

1)求證:

2)填空:①若,當(dāng)時(shí),四邊形是菱形;

②當(dāng)四邊形是正方形時(shí), ________°

查看答案和解析>>

同步練習(xí)冊(cè)答案