【題目】如圖,點(diǎn)A是反比例函數(shù)yx0)圖象上一點(diǎn),過點(diǎn)AABx軸于點(diǎn)B,連接OA,OB,tanOAB.點(diǎn)C是反比例函數(shù)yx0)圖象上一動點(diǎn),連接AC,OC,若△AOC的面積為,則點(diǎn)C的坐標(biāo)為_____

【答案】4).

【解析】

CDx軸于D,解直角三角形求得A25),設(shè)點(diǎn)C的坐標(biāo)為(m),根據(jù)SAOCSAOB+S梯形ABDCSCODS梯形ABDC,得出5+m2)=,解得m4,即可求得C點(diǎn)的坐標(biāo).

解:作CDx軸于D,

點(diǎn)A是反比例函數(shù)yx0)圖象上一點(diǎn),設(shè)Ax),

OBx,AB

∵tan∠OAB,

,即,解得x2,

A2,5

設(shè)點(diǎn)C的坐標(biāo)為(m

SAOCSAOB+S梯形ABDCSCODS梯形ABDC,AOC的面積為,

AB+CDBD

5+m2)=,

整理得,m23m40,

解得m4m=﹣1(舍去),

點(diǎn)C的坐標(biāo)為(4,),

故答案為(4,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點(diǎn),點(diǎn),點(diǎn),點(diǎn),把繞點(diǎn)順時針旋轉(zhuǎn)(旋轉(zhuǎn)角為銳角),得,、、旋轉(zhuǎn)后的對應(yīng)點(diǎn)分別為、,、分別與軸、軸交于點(diǎn)

1)求四邊形的面積;

2)設(shè),,用含的式子表示;

3)設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,當(dāng)的值最小時,求的坐標(biāo).(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°AD平分∠BAC,過AC的中點(diǎn)EFGAD,交BA的延長線于點(diǎn)F,交BC于點(diǎn)G,

1)求證:AEAF;

2)若BCABAF3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知中,,為斜邊上一個動點(diǎn),作,交直角邊于點(diǎn),以為直徑作,交于點(diǎn),連接,于點(diǎn).連結(jié),設(shè).

(1)用含的代數(shù)式表示的長;

(2)求證:;

(3)如圖2,當(dāng)與邊相切時,求的直徑;

(4)若以為頂點(diǎn)的三角形是等腰三角形時,求所有滿足條件的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:把函數(shù)的圖像繞點(diǎn)旋轉(zhuǎn)180°,得到新函數(shù)的圖像,我們稱關(guān)于點(diǎn)的相關(guān)函數(shù).的圖像的對稱軸為直線.例如:當(dāng)時,函數(shù)關(guān)于點(diǎn)的相關(guān)函數(shù)為

1)填空:的值為________(用含的代數(shù)式表示);

2)若,,當(dāng)時,函數(shù)的最大值為,最小值為,且,求的值;

3)當(dāng)時,的圖像與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸相交于點(diǎn).把線段繞原點(diǎn)順時針旋轉(zhuǎn)90°,得到它的對應(yīng)線段.若線段的圖像有公共點(diǎn),結(jié)合函數(shù)圖像,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】移動公司為了提升“停課不停學(xué)”期間某片區(qū)網(wǎng)絡(luò)信號,保證廣大師生網(wǎng)絡(luò)授課、聽課的質(zhì)量,臨時在坡度為的山坡上加裝了信號塔(如圖所示),信號塔底端到坡底的距離為3.9米.同時為了提醒市民,在距離斜坡底點(diǎn)4.4米的水平地面上立了一塊警示牌.當(dāng)太陽光線與水平線成角時,測得信號塔落在警示牌上的影子長為3米,則信號塔的高約為(結(jié)果精確到十分位,參考數(shù)據(jù):,,)

A.11.9B.10.4C.11.4D.13.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸于點(diǎn)A(a,0)B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個結(jié)論:

①點(diǎn)C的坐標(biāo)為(0,m);

②當(dāng)m=0時,ABD是等腰直角三角形;

③若a=-1,則b4

④拋物線上有兩點(diǎn)P(,)Q(,),若1,且2,則

其中結(jié)論正確的序號是(

A.①②B.①②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BEAD交于點(diǎn)E,BED的角平分線EFDC交于點(diǎn)F,若AB=9DF=2FC,則BC=____.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我市某景區(qū)內(nèi)有一條自西向東的筆直林蔭路經(jīng)過景點(diǎn)AB,現(xiàn)市政決定開發(fā)景點(diǎn)C,經(jīng)考察人員測量,景點(diǎn)A位于景點(diǎn)C的在南偏西60°方向,景點(diǎn)B位于景點(diǎn)C的西南方向,A、B兩景點(diǎn)之間相距380米,現(xiàn)準(zhǔn)備由景點(diǎn)C向該林萌路修建一條距離最短的公路,不考慮其它因素,求出這條公路的長?(結(jié)果精確到0.1,參考數(shù)據(jù):1.732

查看答案和解析>>

同步練習(xí)冊答案