【題目】已知О是直線AB上的一點,OE平分

1)在圖(a)中,若,求的度數(shù);

2)在圖(a)中,若,直接寫出的度數(shù)(用含的代數(shù)式表示)

3)將圖(a)中的繞頂點O順時針旋轉(zhuǎn)至圖(b)的位置.

①探究的度數(shù)之間的關(guān)系,直接寫出結(jié)論;

②在的內(nèi)部有一條射線OF,滿足:,試確定的度數(shù)之間的關(guān)系,并說明理由.

【答案】(1)15°;(2);(3)①;②,理由詳見解析.

【解析】

1)由已知可求出∠BOC=180°-AOC=150°,再由∠COD是直角,OE平分∠BOC求出∠DOE的度數(shù);
2)由(1)中的證明方法可得出結(jié)論∠DOE=AOC,從而用含的代數(shù)式表示出∠DOE的度數(shù);
3)①由∠COD是直角,OE平分∠BOC可得出∠COE=BOE=90°-DOE,則得∠AOC=180°-BOC=180°-2COE=180°-290°-DOE),從而得出∠AOC和∠DOE的度數(shù)之間的關(guān)系;
②設(shè),根據(jù)①中結(jié)論以及已知,得出,從而得出結(jié)論.

1)∵,

OE平分

,

2

,,

OE平分

,

3)①

OE平分,

,∴

,

理由:設(shè)

由①可知,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化用品商店用1 000元購進(jìn)一批晨光套尺,很快銷售一空;商店又用1 500元購進(jìn)第二批該款套尺,購進(jìn)時單價是第一批的倍,所購數(shù)量比第一批多100套.

1)求第一批套尺購進(jìn)時單價是多少?

2)若商店以每套4元的價格將這兩批套尺全部售出,可以盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3a0)經(jīng)過點A1,0),B,0),且與y軸相交于點C

(1)求這條拋物線的表達(dá)式;

(2)求∠ACB的度數(shù);

(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從數(shù)軸上的原點開始,先向左移動2cm到達(dá)A點,再向左移動4cm到達(dá)B點,然后向右移動10cm到達(dá)C點.

1)用1個單位長度表示1cm,請你在題中所給的數(shù)軸上表示出A、B、C三點的位置;

2)把點C到點A的距離記為CA,則CA______cm

3)若點B以每秒3cm的速度向左移動,同時AC點以每秒lcm、5cm的速度向右移動,設(shè)移動時間為tt0)秒,試探究CAAB的值是否會隨著t的變化而改變?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形是平行四邊形,點邊上運動(點不與點,重合)

1)如圖1,當(dāng)點運動到邊的中點時,連接,若平分,證明:;

2)如圖2,過點且交的延長線于點,連接.若,,在線段上是否存在一點,使得四邊形是菱形?若存在,請說明當(dāng)發(fā),點分別在線段,上什么位置時四邊形是菱形,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,APB=30°,圓心在PB上的O的半徑為1cm,OP=3cm,若O沿BP方向平移,當(dāng)O與PA相切時,圓心O平移的距離為_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于有理數(shù)ab,定義一種新運算,規(guī)定ab|a+b|+|ab|

1)計算2⊙(﹣3)的值;

2)當(dāng)a,b在數(shù)軸上的位置如圖所示時,化簡ab;

3)已知(aa)⊙a8+a,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線BD平分∠ABC,過點AAEBD,交CD的延長線于點E,過點EEFBC,交BC延長線于點F

1)求證:四邊形ABCD是菱形;

2)若∠ABC45°BC2,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案