【題目】如圖,APB=30°,圓心在PB上的O的半徑為1cm,OP=3cm,若O沿BP方向平移,當(dāng)O與PA相切時,圓心O平移的距離為_____cm.

【答案】1或5

【解析】試題分析:首先根據(jù)題意畫出圖形,然后由切線的性質(zhì),可得∠O′CP=90°,又由∠APB=30°,O′C=1cm,即可求得O′P的長,繼而求得答案.

解:有兩種情況:

(1)如圖1,當(dāng)O平移到O位置時,OPA相切時,且切點(diǎn)為C

連接OC,OCPA,即∠OCP=90°,

∵∠APB=30°,OC=1cm,

OP=2OC=2cm,

OP=3cm,

OO′=OPOP=1(cm).

(2)如圖2,同理可得:OP=2cm,

OO=5cm.

故答案為:15.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,在平面直角坐標(biāo)系中 ,已知二次函數(shù)y=ax2+bx+c (a≠0)

的圖象經(jīng)過 A(-1,0),B(3,0),C(6,4)三點(diǎn).

(1)求此二次函數(shù)解析式和頂點(diǎn) D 的坐標(biāo);

(2)①E為拋物線對稱軸上一點(diǎn),過點(diǎn)E作FG//x 軸,分別交拋物線于F、G兩點(diǎn) ,若,求點(diǎn)E的坐標(biāo);

② 若拋物線對稱軸上點(diǎn) H 到直線 BC 的距離等于點(diǎn) H 到 x 軸的距離,則求出點(diǎn) H

的坐標(biāo);

(3)在(2)的條件下,以點(diǎn)I(1,)為圓心,IH 的長為半徑作⊙I,J 為⊙I上的動點(diǎn),求是否存在一個定值,使得 CJ+EJ 的最小值是若不存在,請說明理由.若存在,請求出的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過畫圖,尋找對頂角和鄰補(bǔ)角(不含平角):

1)若2條直線相交于一點(diǎn),則有_____________對對頂角,_____________對鄰補(bǔ)角.

2)若3條直線相交于同一點(diǎn),則有_____________對對頂角,_____________對鄰補(bǔ)角.

3)若4條直線相交于同一點(diǎn),則有______________對對頂角,__________________對鄰補(bǔ)角.

4)通過(1)~(3)小題中直線條數(shù)與對頂角的對數(shù)之間的關(guān)系,若有n條直線相交于同一點(diǎn),則可形成___________對對頂角,___________對鄰補(bǔ)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過點(diǎn),交x軸于點(diǎn)A、點(diǎn)在B點(diǎn)左側(cè),頂點(diǎn)為D

求拋物線的解析式及點(diǎn)A、B的坐標(biāo);

沿直線BC對折,點(diǎn)A的對稱點(diǎn)為,試求的坐標(biāo);

拋物線的對稱軸上是否存在點(diǎn)P,使?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知О是直線AB上的一點(diǎn),OE平分

1)在圖(a)中,若,求的度數(shù);

2)在圖(a)中,若,直接寫出的度數(shù)(用含的代數(shù)式表示)

3)將圖(a)中的繞頂點(diǎn)O順時針旋轉(zhuǎn)至圖(b)的位置.

①探究的度數(shù)之間的關(guān)系,直接寫出結(jié)論;

②在的內(nèi)部有一條射線OF,滿足:,試確定的度數(shù)之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中,有一道群羊逐草的問題,大意是:牧童甲在草原上放羊,乙牽著一只羊來,并問甲:你的羊群有100只嗎?甲答:如果在這群羊里加上同樣的一群,再加上半群,四分之一群,再加上你的一只,就是100只.問牧童甲趕著多少只羊?若設(shè)這群羊有x只,則下列方程中,正確的是(  )

A. (1++)x=100+1 B. x+x+x+x=100﹣1 C. (1++)x=100﹣1 D. x+x+x+x=100+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在直角梯形四ABCD,ADBC,B=90°,以AB為直徑的圓FDC于點(diǎn)E. 若圓F的半徑是6cmAD=4cm,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,EAD上的一點(diǎn),連接EB并延長,使BF=BE,連接EC并延長,使CG=CE,連接FG.HFG的中點(diǎn),連接DH.

(1)求證:四邊形AFHD為平行四邊形;

(2)CB=CE,BAE=60°,DCE=20°,求∠CBE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于☉O,A是的中點(diǎn),AE⊥AC于A,與☉O及CB的延長線交于點(diǎn)F、E,且=.

(1)求證:△ADC∽△EBA;

(2)如果AB=8,CD=5,求tan∠CAD的值.

查看答案和解析>>

同步練習(xí)冊答案