【題目】在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥BC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.
(1)如圖1,求證:∠ANE=∠DCE;
(2)如圖2,當點N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長;
(3)連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.
【答案】(1)見解析;(2);(3)DE的長分別為或3.
【解析】
(1)由比例中項知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;
(2)先證∠ANE=∠EAC,結(jié)合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;
(3)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.
解:(1)∵AE是AM和AN的比例中項
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE;
(2)∵AC與NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=;
(3)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,
又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
當△AEC與以點E、M、N為頂點所組成的三角形相似時
①∠ENM=∠EAC,如圖2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如圖3,
過點E作EH⊥AC,垂足為點H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
設DE=3x,則HE=3x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+3x=8,
解得x=1,
∴DE=3x=3,
綜上所述,DE的長分別為或3.
科目:初中數(shù)學 來源: 題型:
【題目】對于鈍角α,定義它的三角函數(shù)值如下:sinα=sin (180°-α),cosα=-cos (180°-α);若一個三角形的三個內(nèi)角的比是1∶1∶4,A,B是這個三角形的兩個頂點,sinA,cosB是方程4x2-mx-1=0的兩個不相等的實數(shù)根,求m的值及∠A和∠B的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:3.求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】陽光中學組織學生開展社會實踐活動,調(diào)查某社區(qū)居民對消防知識的了解程度(A:特別熟悉,B:有所了解,C:不知道),在該社區(qū)隨機抽取了100名居民進行問卷調(diào)查,將調(diào)查結(jié)果制成如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖解答下列問題:
(1)若該社區(qū)有居民900人,試估計對消防知識“特別熟悉”的居民人數(shù);
(2)該社區(qū)的管理人員有男、女個2名,若從中選2名參加消防知識培訓,試用列表或畫樹狀圖的方法,求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)開展了“行車安全,方便居民”的活動,對地下車庫作了改進.如圖,這小區(qū)原地下車庫的入口處有斜坡AC長為13米,它的坡度為i=1:2.4,AB⊥BC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC=13°(此時點B、C、D在同一直線上).
(1)求這個車庫的高度AB;
(2)求斜坡改進后的起點D與原起點C的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】環(huán)保局對某企業(yè)排污情況進行檢測,結(jié)果顯示,所排污水中硫化物的濃度超標,即硫化物的濃度超過最高允許的,環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達標,整改過程中,所排污水中硫化物的濃度與時間(天)的變化規(guī)律如圖所示,其中線段表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度與時間成反比例關系
(1)求整改過程中硫化物的濃度與時間的函數(shù)表達式(要求標注自變量的取值范圍)
(2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)(含15天)排污達標?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:直線l和l外一點C.
求作:經(jīng)過點C且垂直于l的直線.
作法:如圖,
(1)在直線l上任取點A;
(2)以點C為圓心,AC為半徑作圓,交直線l于點B;
(3)分別以點A,B為圓心,大于的長為半徑作弧,兩弧相交于點D;
(4)作直線CD.
所以直線CD就是所求作的垂線.
(1)請使用直尺和圓規(guī),補全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:連接AC,BC,AD,BD.
∵AC=BC, = ,
∴CD⊥AB(依據(jù): ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某研究所將某種材料加熱到1000℃時停止加熱,并立即將材料分為A、B兩組,采用不同工藝做降溫對比實驗,設降溫開始后經(jīng)過x min時,A、B兩組材料的溫度分別為yA℃、yB℃,yA、yB與x的函數(shù)關系式分別為yA=kx+b,yB=(x﹣60)2+m(部分圖象如圖所示),當x=40時,兩組材料的溫度相同.
(1)分別求yA、yB關于x的函數(shù)關系式;
(2)當A組材料的溫度降至120℃時,B組材料的溫度是多少?
(3)在0<x<40的什么時刻,兩組材料溫差最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交于點E,以點O為圓心,OC的長為半徑作交OB于點D.若OA=4,則圖中陰影部分的面積為( )
A. + B. +2 C. + D. 2+
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com