14.如圖,矩形紙片ABCD,DC=8,AD=6.
(1)如圖(1),點(diǎn)E在邊AD上且AE=2,以點(diǎn)E為頂點(diǎn)作正方形EFGH,頂點(diǎn)F,H分別在矩形ABCD的邊AB,CD上,連接CG,求∠HCG的度數(shù);
(2)請(qǐng)從A、B兩題中任選一題解答,我選擇A(或B).
A.如圖(2),甲同學(xué)把矩形紙片ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無(wú)縫隙無(wú)重疊的四邊形MPNQ,判斷并說(shuō)明四邊形MPNQ的形狀.
B.如圖(3),乙同學(xué)把(1)中的“正方形EFGH”改為“菱形EFGH”,其余條件不變,此時(shí)點(diǎn)G落在矩形ABCD的外部,已知△CGH的面積是4,求菱形EFGH的邊長(zhǎng)及面積.

分析 (1)先根據(jù)條件判定△AFE≌△DEH≌△KHG,得出AE=DH=GK=2,DE=HK,進(jìn)而得出GK=CK,即△CGK為等腰直角三角形,據(jù)此得出∠HCG的度數(shù);
(2)①若選A題,則根據(jù)折疊的性質(zhì),求得∠PMQ=∠PME+∠QME=$\frac{1}{2}$∠DME+$\frac{1}{2}$∠AME=$\frac{1}{2}$∠AMD=90°,同理可得,∠MQN=90°,∠PNQ=90°,進(jìn)而得出四邊形MPNQ的形狀是矩形;
②若選B題,則需要連接HF,過(guò)G作GP⊥CD的延長(zhǎng)線于P,再根據(jù)矩形和菱形的性質(zhì),判定△AEF≌△PGH(AAS),得出PG=AE=2,再根據(jù)△CGH的面積是4,求得CH的長(zhǎng),進(jìn)而在Rt△DEH中,根據(jù)勾股定理得出EH=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$,即菱形EFGH的邊長(zhǎng)為4$\sqrt{2}$,最后根據(jù)菱形EFGH的面積=2×△EFH的面積=2×(四邊形ADHF的面積-△DEH的面積-△AEF的面積),進(jìn)行計(jì)算求解即可.

解答 解:(1)過(guò)點(diǎn)G作GK⊥CD于點(diǎn)K,
∵四邊形ABCD為矩形,DC=8,AD=6,
∴∠A=∠D=∠HKG=90°,
∵四邊形EFGH為正方形,
∴∠FEH=∠EHG=90°,EF=EH=HG,
∴∠AFE=∠DEH=∠KHG,
∴△AFE≌△DEH≌△KHG,
∴AE=DH=GK=2,DE=HK,
∵DC=8,AD=6,
∴CK=DC-DH=8-6=2,
∴GK=CK,
∴∠KCG=∠CGK=45°,
即∠HCG的度數(shù)是45°;

(2)選A題,四邊形MPNQ的形狀是矩形.
證明:如圖2,∵四邊形ABCD為矩形,
∴∠A=∠D=90°,
∵DM與EM重合,AM與EM重合,
∴PM平分∠DME,QM平分∠AME,
∴∠PMQ=∠PME+∠QME=$\frac{1}{2}$∠DME+$\frac{1}{2}$∠AME=$\frac{1}{2}$∠AMD=90°,
同理可得,∠MQN=90°,∠PNQ=90°,
∴四邊形MPNQ的形狀是矩形.

選B題,
如圖3,連接HF,過(guò)G作GP⊥CD的延長(zhǎng)線于P,
∵四邊形ABCD為矩形,
∴AB∥CD,∠A=∠D=90°,
∴∠AFH=∠PHF,
∵四邊形EFGH為菱形,
∴EF∥HG,EF=HG,
∴∠1=∠2,
∴∠AFE=∠PHG,
又∵GP⊥DP,
∴∠P=∠A=90°,
在△AEF和△PGH中,
$\left\{\begin{array}{l}{∠A=∠P}\\{∠AFE=∠PHG}\\{EF=HG}\end{array}\right.$,
∴△AEF≌△PGH(AAS),
∴PG=AE=2,
∵△CGH的面積是4,
∴$\frac{1}{2}$×HC×PG=4,
∴HC=4,
∵CD=8,AD=6,AE=2,
∴DH=8-4=4,DE=6-2=4,
∴Rt△DEH中,EH=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$,
∴EF=4$\sqrt{2}$,即菱形EFGH的邊長(zhǎng)為4$\sqrt{2}$,
∴Rt△AEF中,AF=$\sqrt{(4\sqrt{2})^{2}-{2}^{2}}$=2$\sqrt{7}$,
∴菱形EFGH的面積=2×△EFH的面積
=2×(四邊形ADHF的面積-△DEH的面積-△AEF的面積)
=2×[$\frac{1}{2}$(DH+AF)×AD-$\frac{1}{2}$×DH×ED-$\frac{1}{2}$×AE×AF]
=2×[$\frac{1}{2}$(4+2$\sqrt{7}$)×6-$\frac{1}{2}$×4×4-$\frac{1}{2}$×2×2$\sqrt{7}$]
=(4+2$\sqrt{7}$)×6-4×4-2×2$\sqrt{7}$
=8+8$\sqrt{7}$.
∴菱形EFGH的邊長(zhǎng)及面積分別為4$\sqrt{2}$和8+8$\sqrt{7}$.

點(diǎn)評(píng) 本題屬于四邊形綜合題,主要考查了矩形、菱形和正方形的性質(zhì),勾股定理,折疊的性質(zhì)以及全等三角形的判定與性質(zhì)的綜合應(yīng)用,解決問(wèn)題的關(guān)鍵是掌握幾種特殊四邊形的性質(zhì),通過(guò)作輔助線構(gòu)造等腰直角三角形和全等三角形.解題時(shí)注意,運(yùn)用割補(bǔ)法求菱形的面積比較合適.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某公司今年如果用原來(lái)線下銷售方式銷售一產(chǎn)品,每月的銷售額可達(dá)100萬(wàn)元.由于該產(chǎn)品供不應(yīng)求,公司計(jì)劃于3月份開始全部改為線上銷售,這樣,預(yù)計(jì)今年每月的銷售額y(萬(wàn)元)與月份x(月)之間的函數(shù)關(guān)系的圖象如圖1中的點(diǎn)狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬(wàn)元)與銷售額y(萬(wàn)元)之間函數(shù)關(guān)系的圖象圖2中線段AB所示.

(1)分別求該公司3月的銷售額和經(jīng)銷成本;
(2)問(wèn):把3月作為第一個(gè)月開始往后算,最早到第幾個(gè)月止,該公司改用線上銷售后所獲得利潤(rùn)總額比同期用線下方式銷售所能獲得的利潤(rùn)總額至少多出200萬(wàn)元?(利潤(rùn)=銷售額-經(jīng)銷成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知關(guān)于x的一元二次方程(x-1)2=$\frac{1}{4}$m-1有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.計(jì)算:
(1)(-12)-(-20)+(-8)-15;
(2)|-$\frac{1}{2}$|×(-4)2+(-$\frac{2}{3}$)×32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.問(wèn)題提出:如圖(1),在邊長(zhǎng)為a(a>2)的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠CHN=∠DEP=45°時(shí),求S正方形MNPQ
問(wèn)題探究:分別延長(zhǎng)QE,MF,NG,PH,交FA,GB,HC,ED的延長(zhǎng)線于點(diǎn)R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個(gè)全等的等腰直角三角形(如圖(2)).
若將上述四個(gè)等腰三角形拼成一個(gè)新的正方形(無(wú)縫隙,不重疊),則新正方形的邊長(zhǎng)為a;這個(gè)新正方形與原正方形ABCD的面積有何關(guān)系=;(填“>”,“=”“或<”);通過(guò)上述的分析,可以發(fā)現(xiàn)S正方形MNPQ與S△FSB之間的關(guān)系是S正方形MNPQ=4S△FSB
問(wèn)題解決:求S正方形MNPQ
拓展應(yīng)用:如圖(3),在等邊△ABC各邊上分別截取AD=BE=CF=1,再分別過(guò)點(diǎn)D,E,F(xiàn)作BC,AC,AB的垂線,得到等邊△PQR,求S△PQR
(請(qǐng)仿照上述探究的方法,在圖3的基礎(chǔ)上,先畫出圖形,再解決問(wèn)題).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.一元二次方程ax2+2x+1=0有解,則a的取值范圍為a≤1是否正確?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知x=1是方程2-$\frac{1}{3}$(a-x)=2x的解,求關(guān)于y的方程a(y-5)-2=a(2y-3)的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,AC⊥AE,BD⊥BF,∠1=36°,∠2=36°
(1)AC∥BD嗎?請(qǐng)說(shuō)明理由
(2)AE∥BF嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某中學(xué)有甲.乙兩臺(tái)復(fù)印機(jī),用于印刷學(xué)習(xí)資料和考試試卷,學(xué)校舉行期末考試,數(shù)學(xué)試卷如果用復(fù)印機(jī)甲、乙單獨(dú)復(fù)印分別需要1小時(shí)和1.5小時(shí).在考試時(shí),為了保密,不能過(guò)早提前印刷試卷,學(xué)校決定在考試前的一個(gè)小時(shí)才開始復(fù)印試卷.
(1)若甲乙兩臺(tái)印刷機(jī)同時(shí)印刷,共需要多少小時(shí)才能印完?(要求列方程解答)
(2)在印刷半個(gè)小時(shí)后甲機(jī)出了故障,停止復(fù)印,此時(shí)離發(fā)卷還有18分鐘.請(qǐng)你算一下,如果乙機(jī)單獨(dú)完成剩下的印刷任務(wù),會(huì)不會(huì)影響按時(shí)發(fā)卷考試?

查看答案和解析>>

同步練習(xí)冊(cè)答案