2.計(jì)算:
(1)(-12)-(-20)+(-8)-15;
(2)|-$\frac{1}{2}$|×(-4)2+(-$\frac{2}{3}$)×32

分析 (1)原式利用減法法則變形,計(jì)算即可得到結(jié)果;
(2)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果.

解答 解:(1)原式=-12+20-8-15=-35+20=-15;
(2)原式=$\frac{1}{2}$×16-$\frac{2}{3}$×9=8-6=2.

點(diǎn)評(píng) 此題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,點(diǎn)D、E分別是等邊△ABC的邊AB、AC上的點(diǎn),滿足BD=AE,連結(jié)CD、BE交于點(diǎn)O.已知BO=2,CO=5,則AO的長(zhǎng)為( 。
A.3B.$\sqrt{21}$C.4D.$\sqrt{19}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.寧波地區(qū)最近霧霾天氣頻繁,使得空氣凈化器得以暢銷,某商場(chǎng)代理銷售某種空氣凈化器,其進(jìn)價(jià)是500元/臺(tái),經(jīng)過市場(chǎng)銷售后發(fā)現(xiàn),在一個(gè)月內(nèi),當(dāng)售價(jià)是1000元/臺(tái)時(shí),可售出50臺(tái),且售價(jià)每降低20元,就可多售出5臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于600元/臺(tái),代理銷售商每月要完成不低于60臺(tái)的銷售任務(wù).
(1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.甲乙兩名同學(xué)做摸球游戲,他們把標(biāo)號(hào)分別為1,2,3的三個(gè)小球放在一個(gè)不透明的口袋中,小球大小和性狀完全相同的.
(1)從袋中隨機(jī)摸出一小球,求摸到標(biāo)號(hào)是1的小球的概率.
(2)從袋中隨機(jī)摸出一小球后放回,搖勻后再隨機(jī)摸出一小球,若兩次摸出的小球的標(biāo)號(hào)之和為偶數(shù)時(shí),則甲勝;若兩次摸出的小球的標(biāo)號(hào)之和為奇數(shù)時(shí),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.某公司員工的月工資如下:
月工資/元900065004000360030001500
人數(shù)/人114321
(1)求該公司員工月工資的平均數(shù)、眾數(shù)和中位數(shù);
(2)你認(rèn)為用(1)中哪個(gè)數(shù)據(jù)描述該公司員工的月工資收入更合適?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.已知:如圖,?ABCD的兩條對(duì)角線相交于點(diǎn)O,E是BO的中點(diǎn).過點(diǎn)B作AC的平行線BF,交CE的延長(zhǎng)線于點(diǎn)F,連接AF.
(1)求證:△FBE≌△COE;
(2)將?ABCD添加一個(gè)條件,使四邊形AFBO是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,矩形紙片ABCD,DC=8,AD=6.
(1)如圖(1),點(diǎn)E在邊AD上且AE=2,以點(diǎn)E為頂點(diǎn)作正方形EFGH,頂點(diǎn)F,H分別在矩形ABCD的邊AB,CD上,連接CG,求∠HCG的度數(shù);
(2)請(qǐng)從A、B兩題中任選一題解答,我選擇A(或B).
A.如圖(2),甲同學(xué)把矩形紙片ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙無重疊的四邊形MPNQ,判斷并說明四邊形MPNQ的形狀.
B.如圖(3),乙同學(xué)把(1)中的“正方形EFGH”改為“菱形EFGH”,其余條件不變,此時(shí)點(diǎn)G落在矩形ABCD的外部,已知△CGH的面積是4,求菱形EFGH的邊長(zhǎng)及面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算:
(1)(-3x2y22•2xy+(xy)5;
(2)(x+y)(x-y)-x(x+y)+2xy.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.在等腰直角△ABC中,AC=BC,∠ACB=90°,D為線段AB上一點(diǎn),連接CD.
(1)如圖1,若D為線段AB中點(diǎn),過點(diǎn)C、點(diǎn)B分別作CD、AB的垂線相交于點(diǎn)E,連接AE,若AC=4,求AE的長(zhǎng).
(2)如圖2,過點(diǎn)C、點(diǎn)B分別作CD、AB的垂線相交于點(diǎn)E,連接AE,取AE的中點(diǎn)為F,連接CF,求證:4CF2+BE2=2CD2
(3)如圖3,過點(diǎn)B作BH⊥CD于點(diǎn)H,取AB的中點(diǎn)為M,連接HM,若CH:HB=1:5,請(qǐng)直接寫出$\frac{CB}{HM}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案