【題目】如圖1,在等邊△ABC的邊AC的延長(zhǎng)線(xiàn)上取一點(diǎn)E,以CE為邊作等邊△CDE,使它與△ABC位于直線(xiàn)AE的同側(cè).
(1)同學(xué)們對(duì)圖1進(jìn)行了熱烈的討論,猜想出如下結(jié)論,你認(rèn)為正確的有(填序號(hào)). ①△ACD≌△BCE;②△ACP≌△BCQ; ③△DCP≌△ECQ;④∠ARB=60°;⑤△CPQ是等邊三角形.
(2)當(dāng)?shù)冗叀鰿ED繞C點(diǎn)旋轉(zhuǎn)一定角度后(如圖2),(1)中有哪些結(jié)論還是成立的?并對(duì)正確的結(jié)論分別予以證明.
【答案】
(1)①②③④⑤
(2)解:當(dāng)?shù)冗叀鰿ED繞C點(diǎn)旋轉(zhuǎn)一定角度后 (1)中結(jié)論①、④仍然成立,證明如下:
∵△ABC和△CDE是等邊三角形
∴CA=CB,CD=CE,∠ACB=∠ECD=60°,
∴∠ACB+∠BCD=∠ECD+∠BCD
即∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴∠BCE=∠CAD,
又∵∠APC=∠BPR,
∴∠ACB=∠ARB,
∵∠ACB=60°,
∴∠ARB=60°.
【解析】解:(1)∵等邊△ABC和等邊△CDE, ∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=∠BCE,
在△ACD與△BCE中,
,
∴△ACD≌△BCE(SAS),
∴∠DAC=∠EBC,
同理證明△ACP≌△BCQ;△DCP≌△ECQ;
進(jìn)而得出∠ARB=60°;△CPQ是等邊三角形;
所以正確的有①②③④⑤;
故答案為:①②③④⑤;
(1)根據(jù)等邊三角形的性質(zhì)得出各角都是60°,各邊相等,再利用全等三角形的判定和性質(zhì)證明即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)和全等三角形的判定解答即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列條件中:
①∠B+∠BCD=180°;
②∠1=∠2;
③∠3=∠4;
④∠B=∠5.
能判定AB∥CD的條件個(gè)數(shù)有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平行四邊形ABCD中,點(diǎn)E在直線(xiàn)AD上,AE=AD,連接CE交BD于點(diǎn)F,則EF:FC的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)y=﹣x+4與兩坐標(biāo)軸分別相交于點(diǎn)A,B兩點(diǎn),點(diǎn)C是線(xiàn)段AB上任意一點(diǎn),過(guò)C分別作CD⊥x軸于點(diǎn)D,CE⊥y軸于點(diǎn)E.雙曲線(xiàn) 與CD,CE分別交于點(diǎn)P,Q兩點(diǎn),若四邊形ODCE為正方形,且 ,則k的值是( )
A.4
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把△ABC經(jīng)過(guò)平移后得到△A′B′C′,已知A(4,3),B(3,1),B′(1,﹣1),C′(2,0),則△ABC的面積為( )
A.
B.
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,P(2,2),點(diǎn)A在x軸正半軸上運(yùn)動(dòng),點(diǎn)B在y軸負(fù)半軸上運(yùn)動(dòng),且PA=PB.
(1)求證:PA⊥PB;
(2)若點(diǎn)A(8,0),求點(diǎn)B的坐標(biāo);
(3)求OA﹣OB的值;
(4)如圖2,若點(diǎn)B在y軸正半軸上運(yùn)動(dòng)時(shí),直接寫(xiě)出OA+OB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開(kāi)挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3 , 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來(lái)完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如下表所示:
租金(單位:元/臺(tái)時(shí)) | 挖掘土石方量(單位:m3/臺(tái)時(shí)) | |
甲型挖掘機(jī) | 100 | 60 |
乙型挖掘機(jī) | 120 | 80 |
(1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?
(2)如果每小時(shí)支付的租金不超過(guò)850元,又恰好完成每小時(shí)的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)隊(duì)要把4000噸貨物運(yùn)到雅安地震災(zāi)區(qū)(方案定后,每天的運(yùn)量不變)。
(1)從運(yùn)輸開(kāi)始,每天運(yùn)輸?shù)呢浳飮崝?shù)n(單位:噸)與運(yùn)輸時(shí)間t(單位:天)之間有怎樣的函數(shù)關(guān)系式?
(2)因地震,到災(zāi)區(qū)的道路受阻,實(shí)際每天比原計(jì)劃少運(yùn)20%,則推遲1天完成任務(wù),求原計(jì)劃完成任務(wù)的天數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com