如圖,OA和OB是⊙O的兩條互相垂直的半徑,M是弦AB的中點,過M作MC∥OA,交于C.試說明

答案:
解析:

  連接OC,過C點作CDOAD,再過M點做MNOAN點,

  ∴四邊形CMND為矩形,則MNOBOCCD

  ∴∠AOC,而∠AOB,故


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的⊙O的切線交OA延長線于點R.
(Ⅰ)求證:RP=RQ;
(Ⅱ)若OP=PA=1,試求PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,OA和OB是⊙O的半徑,并且OA⊥OB.P是OA上的任意一點,BP的延長線交⊙O于點Q,點R在OA的延長線上,且RP=RQ.
(1)求證:RQ是⊙O的切線;
(2)求證:OB2=PB•PQ+OP2;
(3)當(dāng)RA≤OA時,試確定∠B的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于Q,過Q的⊙O的切線交OA的延長線于R.求證:RP=RQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,OA和OB是⊙O的半徑,且OA⊥OB,P是OA上的任意一點,BP的延長線交⊙O于D,PD的垂直平分線交OA的延長線于點C,連接CD.
(1)求證:CD是⊙O的切線;
(2)若P是OA延長線上的任意一點,其他條件不變,CD還是⊙O的切線嗎?如果是,在備用圖②中作出相應(yīng)圖形(請保留作圖痕跡),并論證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的直線交OA延長線于點R,且RP=RQ
求證:直線QR是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案